References

  1. J.S. Ogola, W.V. Mitullah, M.A. Omulo, Impact of gold mining on the environment and human health: a case study in the Migori gold belt, Kenya, Environ. Geochem. Health, 24 (2002) 141–157.
  2. J. Lebel, D. Mergler, F. Branches, M. Lucotte, M. Amorim, F. Larribe, J. Dolbec, Neurotoxic effects of low-level methylmercury contamination in the Amazonian Basin, Environ. Res., 79 (1998) 20–32.
  3. US Environmental Protection Agency, Final Report: Integrated Science Assessment for Lead, USEPA, Washington, D.C., USA, EPA/600/R-10/075F, 2013.
  4. R. Saravanane, V.V. Ranade, V.M. Bhandari, A.S. Rao, Urban Wastewater Treatment for Recycling and Reuse in Industrial Applications: Indian Scenario, Industrial Wastewater Treatment, Recycling and Reuse, Butterworth-Heinemann, Oxford, 2014, pp. 283–322.
  5. S.M. Shaheen, F.I. Eissa, K.M. Ghanem, H.M.G. El-Din, F.S. Al Anany, Heavy metals removal from aqueous solutions and wastewaters by using various by products, J. Environ. Manage., 128 (2013) 514–521.
  6. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  7. M. Owlad, M.K. Aroua, W.A.W. Daud, S. Baroutian, Removal of hexavalent chromium-contaminated water and wastewater: a review, Water Air Soil Pollut., 200 (2009) 59–77.
  8. G. McKay, S.J. Allen, I.F. McConvey, M.S. Otterburn, Transport processes in the sorption of colored ions by peat particles, J. Colloid Interface Sci., 80 (1981) 323–339.
  9. M. Tsezos, B. Volesky, Biosorption of uranium and thorium, Biotechnol. Bioeng., 23 (1981) 583–604.
  10. A.K. Bhattacharya, C. Venkobachar, Removal of cadmium (II) by low cost adsorbents, J. Environ. Eng., 110 (1984) 110–122.
  11. B. Volesky, I. Prasetyo, Cadmium removal in a biosorption column, Biotechnol. Bioeng., 43 (1994) 1010–1015.
  12. A.M. Farhan, A.H. Al-Dujaili, A.M. Awwad, Equilibrium and kinetic studies of cadmium(II) and lead(II) ions biosorption onto Ficus carcia leaves, Int. J. Ind. Chem., 4 (2013) 24–32.
  13. T.R. Muraleedharan, C. Venkobachar, Mechanism of biosorption of copper (II) by Ganoderma lucidum, Biotechnol. Bioeng., 35 (1990) 320–327.
  14. L. Philip, L. Iyengar, C. Venkobachar, Evaluation of Sodium Alginate as an Immobilization Matrix for the Removal of Copper by Pseudomonas aeruginosa, Proc. 9th International Symposium: Heavy Metals in the Environment, Toronto, Canada, 1993.
  15. G.M. Gadd, Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment, J. Chem. Technol. Biotechnol., 84 (2009) 13–28.
  16. Y.J.P. Poots, G. McKay, J. Healy, The removal of acid dye from effluent using natural adsorbents – I peat, Water Res., 10 (1976) 1061–1066.
  17. B. Allard, K. Hakanson, S. Karlson, The Importance of Sorption Phenomena in Relation to Trace Element Speciation and Mobility, L. Landner, Ed., Speciation of Metals in Water Sediment and Soil Systems; Proceedings of an International Workshop, Springer-Verlag, New York, 1986, pp. 141–153.
  18. E.R.I.C.H. Adler, K. Lundquist, Spectrochemical estimation of phenylcoumaran elements in lignin, Acta Chem. Scand., 17 (1963) 13–26.
  19. C. Caramalău, L. Bulgariu, M. Macoveanu, Cobalt (II) removal from aqueous solutions by adsorption on modified peat moss, Chem. Bull. “POLITEHNICA” Univ. Timisoara, 54 (2009) 13–17.
  20. S.J. Lee, J.H. Park, Y.T. Ahn, J.W. Chung, Comparison of heavy metal adsorption by peat moss and peat moss-derived biochar produced under different carbonization conditions, Water Air Soil Pollut., 226 (2015) 2106–2116.
  21. H. Šillerová, M. Komárek, New Low Cost Sorbents for Cr(VI) – Batch and Column Experiments, Proc. 16th International Conference on Heavy Metals in the Environment, E3S Web of Conferences, EDP Sciences, 2013.
  22. H. Qiu, L. Lv, B.C. Pan, Q.J. Zhang, W.M. Zhang, Q.X. Zhang, Critical review in adsorption kinetic models, J. Zhejiang Univ. Sci. A, 10 (2009) 716–724.
  23. G. Naja, V. Diniz, B. Volesky, Predicting Metal Biosorption Performance, S.T.L. Harrison, D.E. Rawlings, J. Peterson, Eds., Proc. 16th International Biohydrometallurgy Symposium, Compress Co., Cape Town, South Africa, 2005, pp. 553–562.
  24. S. Saraf, V.K. Vaidya, Statistical optimization of biosorption of Reactive Orange 13 by dead biomass of Rhizopus arrhizus NCIM 997 using response surface methodology, Int. J. Ind. Chem., 6 (2015) 93–104.
  25. P. Kumar, P. Sharma, Artificial neural networks – a study, Int. J. Emerging Eng. Res. Technol., 2 (2014) 143–148.
  26. W.S. McCulloch, W.A. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biolp., 52 (1990) 99–115 (Reprinted from Bull. Math. Biophys., 5 (1943) 115–133).
  27. T.H. Kim, Pattern Recognition Using Artificial Neural Network: A Review, International Conference on Information Security and Assurance, Springer Berlin Heidelberg, 2010, pp. 138–148.
  28. R. Karimi, F. Yousefi, M. Ghaedi, K. Dashtian, Back propagation artificial neural network and central composite design modeling of operational parameter impact for sunset yellow and azur (II) adsorption onto MWCNT and MWCNT-Pd-NPs: isotherm and kinetic study. Chemom. Intell. Lab. Syst., 159 (2016) 127–137.
  29. Z. Shahryari, A. Mohebbi, A.S. Goharrizi, A.A. Forghani, Application of artificial neural networks for formulation and modeling of dye adsorption onto multiwalled carbon nanotubes, Res. Chem. Intermed., 39 (2013) 3595–3609.
  30. C. Cojocaru, M. Macoveanu, I. Cretescu, Peat-based sorbents for the removal of oil spills from water surface: application of artificial neural network modeling, Colloids Surf., A, 384 (2011) 675–684.
  31. S. Chowdhury, S. Chakraborty, P.D. Saha, Removal of crystal violet from aqueous solution by adsorption onto eggshells: equilibrium, kinetics, thermodynamics and artificial neural network modeling, Waste Biomass Valorization, 4 (2013) 655–664.
  32. M. Saemi, M. Ahmadi, A.Y. Varjani, Design of neural networks using genetic algorithm for the permeability estimation of the reservoir, J. Pet. Sci. Eng., 59 (2007) 97–107.
  33. P. Lu, S. Chen, Y. Zheng, Artificial intelligence in civil engineering, Math. Prob. Eng., 2012 (2012) Article ID 145974.
  34. M. Fan, T. Li, J. Hu, R. Cao, X. Wei, X. Shi, W. Ruan, Artificial Neural Network Modeling and Genetic Algorithm Optimization for Cadmium Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO) Composites, Materials, 10 (2017) 1–22.
  35. A.M. Ghaedi, M. Ghaedi, A.R. Pouranfard, A. Ansari, Z. Avazzadeh, A. Vafaei, I. Tyagi, S. Agarwal, V.K. Gupta, Adsorption of Triamterene on multi-walled and single-walled carbon nanotubes: artificial neural network modeling and genetic algorithm optimization, J. Mol. Liq., 216 (2016) 654–665.
  36. H. Pfost, V. Headley, Methods of Determining and Expressing Particle Size, Feed Manufacturing Technology, 1976, pp. 512–517.
  37. US Environmental Protection Agency, Fate, Transport, and Transformation Test Guidelines, Adsorption/Desorption (Batch Equilibrium), USEPA, Washington, DC, OPPTS 835.1230, 2008.
  38. W.J. Weber, C.T. Miller, Modeling the sorption of hydrophobic contaminants by aquifer materials—I. Rates and equilibria, Water Res., 22 (1988) 457–464.
  39. Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process Saf. Environ. Prot., 76 (1998) 332–340.
  40. Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J., 70 (1998) 115–124.
  41. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  42. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
  43. A.E. Ofomaja, Intraparticle diffusion process for lead(II) biosorption onto mansonia wood sawdust, Bioresour. Technol., 101 (2010) 5868–5876.
  44. C. Sutherland, C. Venkobachar, A diffusion-chemisorption kinetic model for simulating biosorption using forest macrofungus, Fomes fasciatus, Int. Res. J. Plant Sci., 1 (2010) 107–117.
  45. A.P. Mathews, W.J. Weber Jr., Effects of External Mass Transfer and Intraparticle Diffusion on Adsorption Rates in Slurry Reactors, AIChE Symposium Series, Vol. 73, 1977, pp. 91–98.
  46. T. Furusawa, J.M. Smith, Fluid-particle and intraparticle mass transport rates in slurries, Ind. Eng. Chem. Fundam., 12 (1973) 197–203.
  47. G.E. Boyd, A.W. Adamson, L.S. Meyers, The exchange adsorption of ions from aqueous solutions by organic zeolites II, J. Am. Chem. Soc., 69 (1947) 2836–2848.
  48. T. Vermeulen, Theory of irreversible and constant-pattern solid diffusion, Ind. Eng. Chem., 45 (1953) 1664–1670.
  49. C. Lao-Luque, M. Solé, X. Gamisans, C. Valderrama, A.D. Dorado, Characterization of chromium (III) removal from aqueous solutions by an immature coal (leonardite). Toward a better understanding of the phenomena involved, Clean Technol. Environ. Policy, 16 (2014) 127–136.
  50. D.D. Do, Adsorption Analysis: Equilibria and Kinetics, Vol 2, Imperial College Press, London, 1998.
  51. H. Karimi, M. Ghaedi, Application of artificial neural network and genetic algorithm to modeling and optimization of removal of methylene blue using activated carbon, J. Ind. Eng. Chem., 20 (2014) 2471–2476.
  52. R. Mahajan, G. Kaur, Neural networks using genetic algorithms, Int. J. Comput. Appl., 77 (2013) 6–11.
  53. M. Bagheri, S.A. Mirbagheri, Z. Bagheri, A.M. Kamarkhani, Modeling and optimization of activated sludge bulking for a real wastewater treatment plant using hybrid artificial neural networks-genetic algorithm approach, Process Saf. Environ. Prot., 95 (2015) 12–25.
  54. D.L. Mitic-Stojanovic, A. Zarubica, M. Purenovic, D. Bojic, T. Andjelkovic, A.L. Bojic, Biosorptive removal of Pb2+, Cd2+ and Zn2+ ions from water by Lagenaria vulgaris shell, Water SA, 37 (2011) 303–312.
  55. K. Fu, Z. Li, Q. Xia, T. Zhong, Change and Improving of Ammonium Exchange Capacity onto Zeolite in Seawater, 2nd International Conference on Environmental Engineering and Applications IPCBEE, Vol. 17, IACSIT Press, Singapore, 2011, pp. 226–231.
  56. S.J. Lee, J.H. Park, Y.T. Ahn, J.W. Chung, Comparison of heavy metal adsorption by peat moss and peat moss-derived biochar produced under different carbonization conditions, Water Air Soil Pollut., 226 (2015) 2106–2116.
  57. J.L. Gardea-Torresday, L. Tang, J.M. Salvador, Copper adsorption by esterified and unesterified fractions of sphagnum peat moss and its different humic substances, J. Hazard. Mater., 48 (1996) 191–206.
  58. B. Subramanyam, A. Das, Linearized and non-linearized isotherm models comparative study on adsorption of aqueous phenol solution in soil, Int. J. Environ. Sci. Technol., 6 (2009) 633–640.
  59. B.S. Chittoo, C. Sutherland, Adsorption of phosphorus using water treatment sludge, J. Appl. Sci., 14 (2014) 3455–3463.
  60. B. Das, N.K. Mondal, R. Bhaumik, P. Roy, K.C. Pal, C.R. Das, Removal of copper from aqueous solution using alluvial soil of Indian origin: equilibrium, kinetic and thermodynamic study, J. Mater. Environ. Sci., 4 (2013) 392–408.
  61. A.G. El-Said, Biosorption of Pb (II) ions from aqueous solutions onto rice husk and its ash, J. Am. Sci., 6 (2010) 143–150.
  62. C.F. Baes, R.E. Mesmer, Hydrolysis of Cations, Wiley, New York, 1976.
  63. K. Jiang, T.H. Sun, L.N. Sun, H.B. Li, Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline, J. Environ. Sci., 18 (2006) 1221–1225.
  64. H. Cheng, H. Song, F. Cheng, The effect of ion charge-mass ratio on adsorption of heavy metals on magnetotactic bacteria, Afr. J. Microbiol. Res., 6 (2012) 7564–7571.
  65. S. Schiewer, B. Volesky, Ionic strength and electrostatic effects in biosorption of protons, Environ. Sci. Technol., 31 (1997) 1863–1871.
  66. S.G. Poulopoulos, V.J. Inglezakis, Adsorption, Ion Exchange and Catalysis: Design of Operations and Environmental Applications, Elsevier, Netherlands, 2006.
  67. Y.S. Ho, J.C.Y. Ng, G. McKay, Kinetics of pollutant sorption by biosorbents: review, Sep. Purif. Rev., 29 (2000) 189–232.
  68. Y. Sağ, Y. Aktay, Mass transfer and equilibrium studies for the sorption of chromium ions onto chitin, Process Biochem., 36 (2000) 157–173.
  69. J. Gao, Q. Zhang, K. Su, R. Chen, Y. Peng, Biosorption of acid yellow 17 from aqueous solution by non-living aerobic granular sludge, J. Hazard. Mater., 174 (2010) 215–225.
  70. S.S. Gupta, K.G. Bhattacharyya, Kinetics of adsorption of metal ions on inorganic materials: a review, Adv. Colloid Interface Sci., 162 (2011) 39–58.
  71. J. Wu, H.Q. Yu, Biosorption of 2,4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass: isotherms, kinetics and thermodynamics, J. Hazard. Mater., 137 (2006) 498–508.
  72. Z. Aksu, E. Kabasakal, Batch adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solution by granular activated carbon, Sep. Purif. Technol., 35 (2004) 223–240.
  73. K.K. Choy, D.C. Ko, C.W Cheung, J.F. Porter, G. McKay, Film and intraparticle mass transfer during the adsorption of metal ions onto bone char, J. Colloid Interface Sci., 271 (2004) 284–295.
  74. J.C. Crittenden, R.R. Trussell, D.W. Hand, K.J. Howe, G. Tchobanoglous, MWH’s Water Treatment: Principles and Design, John Wiley & Sons, New Jersey, 2012.
  75. R.M. Viegas, M. Campinas, H. Costa, M.J. Rosa, How do the HSDM and Boyd’s model compare for estimating intraparticle diffusion coefficients in adsorption processes, Adsorption, 20 (2014) 737–746.
  76. M.N. Almasri, J.J. Kaluarachchi, Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data, Environ. Modell. Software, 20 (2005) 851–871.
  77. K. Yetilmezsoy, Modeling studies for the determination of completely mixed activated sludge reactor volume: steadystate, empirical and ANN applications, Neural Network World, 20 (2010) 559–589.
  78. A. Akkoyunlu, K. Yetilmezsoy, F. Erturk, E. Oztemel, A neural network-based approach for the prediction of urban SO2 concentrations in the Istanbul metropolitan area, Int. J. Environ. Pollut., 40 (2010) 301–321.
  79. G. Garson, Interpreting neural-network connection weights, Artif. Intell. Expert, 6 (1991) 46–51.