References
- J.M. Montgomery, Water Treatment Principles and Design, John
Wiley, 1995.
- M. Gholami, B.A. Souraki, A. Pendashteh, M. Bagherian
Marzouni, Efficiency evaluation of the membrane/AOPs for
paper mill wastewater treatment, Environ. Technol., 38 (2017)
1127–1138.
- T.-W. Ha, K.-H. Choo, S.-J. Choi, Effect of chlorine on adsorption/
ultrafiltration treatment for removing natural organic matter in
drinking water, J. Colloid Interface Sci., 274 (2004) 587–593.
- J. Beard, Coagulation and Flocculation, D.K. Kent, Ed., Water
Treatment Plant Operation, Vol. 1, 1983.
- L.A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965) 338–353.
- L.A. Zadeh, Fuzzy algorithms, Inf. Control, 12 (1968) 94–102.
- L.A. Zadeh, Quantitative fuzzy semantics, Inf. Sci., 3 (1971)
159–176.
- L.A. Zadeh, Outline of a new approach to the analysis of
complex systems and decision processes, IEEE Trans. Syst. Man
Cybern., SMC-3 (1973) 28–44.
- E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis
with a fuzzy logic controller, Int. J. Man Mach. Stud., 7 (1975) 1–13.
- A. Daghbandan, M. Akbarizadeh, M. Yaghoobi, Modeling and
optimization of poly electrolyte dosage in water treatment
process by GMDH Type-NN and MOGA, Int. J. Chemoinform.
Chem. Eng., 3 (2013) 94–106.
- A. Amirtharajah, C. O’Melia, Coagulation Processes:
Destabilization, Mixing, and Flocculation, McGraw-Hill, Inc., 1990.
- E.H. Mamdani, Advances in the linguistic synthesis of fuzzy
controllers, Int. J. Man Mach. Stud., 8 (1976) 669–678.
- V. Leeuwen, Empirical mathematical models and artificial
neural networks for the determination of alum doses for
treatment of southern Australian surface waters, Aqua, 48
(1999) 115–127.
- T. Takagi, M. Sugeno, Fuzzy identification of system and its
applications to modeling and control, IEEE Trans. Syst. Man
Cybern., SMC-15 (1985) 116–132.
- M. Sugeno, G. Kang, Structure identification of fuzzy model,
Fuzzy Sets Syst., 28 (1988) 15–33.
- J. Foroozesh, A. Khosravani, A. Mohsenzadeh, A. Haghighat
Mesbahi, Application of artificial intelligence (AI) in kinetic
modeling of methane gas hydrate formation, J. Taiwan Inst.
Chem. Eng., 45 (2014) 2258–2264.
- H. Citakoglu: Comparison of artificial intelligence techniques
via empirical equations for prediction of solar radiation,
Comput. Electron. Agric., 118 (2015) 28–37.
- M.-T. Puth, M. Neuh€auser, G.D. Ruxton, Effective use of
Pearson’s product–moment correlation coefficient, Anim.
Behav., 93 (2014) 183–189.
- S. Malini, R.S. Moni, Image denoising using multiresolution
singular value decomposition transform, Procedia Comput.
Sci., 46 (2015) 1708–1715.
- L. Wang, R. Langari, J. Yen, Identifying Fuzzy Rule Based Models
Using Orthogonal Transformation and Back Propagation,
C.T. Leondes, Ed., Fuzzy Theory Systems: Techniques and
Application, Vol. 1, Academic Press, 1999.