References

  1. North American Meat Institute, The United States Meat Industry at a Glance, North American Meat Institute, 2012.
  2. B.H. Kiepper, Characterization of Poultry Processing Operations, Wastewater Generation, and Wastewater Treatment Using Mail Survey and Nutrient Discharge Monitoring Methods, The University of Georgia, 2003.
  3. U.S. Poultry, Process Overview, U.S. Poultry & Egg Association, 2011.
  4. U.S. EPA, Technical Development Document for the Final Effluent Limitations Guidelines and Standards for the Meat and Poultry Products Point Source Category (40 CFR 432), U.S. EPA, 2004.
  5. J.T. Sims, R.R. Simard, B.C. Joern, Phosphorus loss in agricultural drainage: historical perspective and current research, J. Environ. Qual., 27 (1998) 277–293.
  6. D.J. Conley, H.W. Paerl, R.W. Howarth, D.F. Boesch, S.P. Seitzinger, K.E. Havens, C. Lancelot, G.E. Likens, Controlling eutrophication: nitrogen and phosphorus, Science, 323 (2009) 1014–1015.
  7. T.C. Daniel, A.N. Sharpley, J.L. Lemunyon, Agricultural phosphorus and eutrophication: a symposium overview, J. Environ. Qual., 27 (1998) 251–257.
  8. EPA, Quality Criteria for Water, Office of Water Regulations and Standards, Washington, D.C., 1986.
  9. The Code of Ordinances City of Gainesville, Georgia, Pretreatment Design Parameters, 1991.
  10. S.T. Muserere, Z. Hoko, I. Nhapi, Characterisation of raw sewage and performance assessment of primary settling tanks at Firle Sewage Treatment Works, Harare, Zimbabwe, Phys. Chem. Earth, Parts A/B/C, 67–69 (2014) 226–235.
  11. M. Henze, Biological Wastewater Treatment: Principles, Modelling and Design, IWA Publishing, 2008.
  12. N. Rastetter, A. Gerhardt, Toxic potential of different types of sewage sludge as fertiliser in agriculture: ecotoxicological effects on aquatic and soil indicator species, J. Soils Sediments, 15 (2015) 565–577.
  13. F.P. Camargo, P. Sérgio Tonello, A.C.A. dos Santos, I.C.S. Duarte, Removal of toxic metals from sewage sludge through chemical, physical, and biological treatments—a review, Water Air Soil Pollut., 227 (2016) 433.
  14. J. Xu, L. Luu, Y. Tang, Phosphate removal using aluminumdoped magnetic nanoparticles, Desal. Wat. Treat., 58 (2017) 239–248.
  15. B. Simpson, D. France, B. Lewis, Wastewater Sampling, U.S. EPA, 2013.
  16. U.S. EPA, Methods for Chemical Analysis of Water and Wastes, Cincinnati, Ohio, USA, 1983.
  17. U.S. EPA, Phosphorous, All Forms (Colorimetric, Ascorbic Acid, Single Reagent), 1971.
  18. B.Y. Spivakov, T.A. Maryutina, H. Muntau, Phosphorus speciation in water and sediments, Pure Appl. Chem., 71 (1999) 2161–2176.
  19. Y. Okano, T. Nakamura, Hydrothermal synthesis of aluminum bearing magnetite particles, Colloids Surf., A, 139 (1998) 279–285.
  20. C.E.T. Caixeta, M.C. Cammarota, A.M.F. Xavier, Slaughterhouse wastewater treatment: evaluation of a new three-phase separation system in a UASB reactor, Bioresour. Technol., 81 (2002) 61–69.
  21. I.S. Arvanitoyannis, D. Ladas, Meat waste treatment methods and potential uses, Int. J. Food Sci. Technol., 43 (2008) 543–559.
  22. M. Baskar, B. Sukumaran, Effective method of treating wastewater from meat processing industry using sequencing batch reactor, Int. Res. J. Eng. Technol., 2 (2015) 27–31.
  23. M.R. Johns, Developments in wastewater treatment in the meat processing industry: a review, Bioresour. Technol., 54 (1995) 203–216.
  24. A. Tawfik, B. Klapwijk, F. el-Gohary, G. Lettinga, Treatment of anaerobically pre-treated domestic sewage by a rotating biological contactor, Water Res., 36 (2002) 147–155.
  25. M. Karhu, T. Leiviskä, J. Tanskanen, Enhanced DAF in breaking up oil-in-water emulsions, Sep. Purif. Technol., 122 (2014) 231–241.
  26. Q. Zhang, S. Liu, C. Yang, F. Chen, S. Lu, Bioreactor consisting of pressurized aeration and dissolved air flotation for domestic wastewater treatment, Sep. Purif. Technol., 138 (2014) 186–190.
  27. I.R. de Nardi, T.P. Fuzi, V. Del Nery, Performance evaluation and operating strategies of dissolved-air flotation system treating poultry slaughterhouse wastewater, Resour. Conserv. Recycl., 52 (2008) 533–544.
  28. W.-H. Zhang, J. Zhang, B. Zhao, P. Zhu, Microbubble size distribution measurement in a DAF system, Ind. Eng. Chem. Res., 54 (2015) 5179–5183.
  29. A.J. Dassey, C.S. Theegala, Evaluating coagulation pretreatment on poultry processing wastewater for dissolved air flotation, J. Environ. Sci. Health, Part A, 47 (2012) 2069–2076.
  30. P. Jokela, E. Ihalainen, J. Heinänen, M. Viitasaari, Dissolved air flotation treatment of concentrated fish farming wastewaters, Water Sci. Technol., 43 (2001) 115–121.
  31. C.C. Ross, J.P. Pierce, G.E. Valentine, Phosphorus Removal from Industrial Wastewater Using Dissolved Air Flotation to Meet Discharge Requirements for the Chesapeake Bay Watershed, 87th Annual Water Environment Federation Technical Exhibition and Conference, New Orleans, Louisiana, 2014.
  32. P. Chowdhury, T. Viraraghavan, A. Srinivasan, Biological treatment processes for fish processing wastewater – a review, Bioresour. Technol., 101 (2010) 439–449.
  33. A.P. Annachhatre, S.M.R. Bhamidimarri, Activated Sludge Treatment of Meat Processing Wastewater, T. Yano, R. Matsuno, K. Nakamura, Eds., Developments in Food Engineering: Proc. 6th International Congress on Engineering and Food, Springer US, Boston, MA, 1994, pp. 1008–1010.
  34. J. Bohdziewicz, E. Sroka, Integrated system of activated sludge– reverse osmosis in the treatment of the wastewater from the meat industry, Process Biochem., 40 (2005) 1517–1523.
  35. N. Thayalakumaran, Treatment of Meat Processing Wastewater for Carbon, Nitrogen and Phosphorus Removal in a Sequencing Batch Reactor, Process & Environmental Technology Massey University, 2002.
  36. I.R. de Nardi, V. Del Nery, A.K.B. Amorim, N.G. dos Santos, F. Chimenes, Performances of SBR, chemical–DAF and UV disinfection for poultry slaughterhouse wastewater reclamation, Desalination, 269 (2011) 184–189.
  37. D.H. Kwak, K.C. Lee, Enhanced phosphorus removal in the DAF process by flotation scum recycling for advanced treatment of municipal wastewater, Water Sci. Technol., 72 (2015) 600–607.
  38. A.Z. Gu, L. Liu, J.B. Neethling, H.D. Stensel, S. Murthy, Treatability and fate of various phosphorus fractions in different wastewater treatment processes, Water Sci. Technol., 63 (2011) 804–810.
  39. L.S. Clesceri, A.E. Greenberg, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington, D.C., 1998.
  40. J.G. Vieira, A.G.d.S. Manetti, E. Jacob-Lopes, M.I. Queiroz, Uptake of phosphorus from dairy wastewater by heterotrophic cultures of cyanobacteria, Desal. Wat. Treat., 40 (2012) 224–230.
  41. M. Maurer, M. Boller, Modelling of phosphorus precipitation in wastewater treatment plants with enhanced biological phosphorus removal, Water Sci. Technol., 39 (1999) 147–163.
  42. B. Kim, M. Gautier, C. Rivard, C. Sanglar, P. Michel, R. Gourdon, Effect of aging on phosphorus speciation in surface deposit of a vertical flow constructed wetland, Environ. Sci. Technol., 49 (2015) 4903–4910.
  43. H.K.G.R. Millier, P.S. Hooda, Phosphorus species and fractionation – why sewage derived phosphorus is a problem, J. Environ. Manage., 92 (2011) 1210–1214.
  44. H.P. Jarvie, C. Neal, P.J.A. Withers, Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus?, Sci. Total Environ., 360 (2006) 246–253.
  45. I. Pasztor, P. Thury, J. Pulai, Chemical oxygen demand fractions of municipal wastewater for modeling of wastewater treatment, Int. J. Environ. Sci. Technol., 6 (2009) 51–56.
  46. S.H. Nekoo, S. Fatemi, Experimental study and adsorption modeling of COD reduction by activated carbon for wastewater treatment of oil refinery, Iran. J. Chem. Chem. Eng., 32 (2013) 81–89.
  47. S. Verma, B. Prasad, I.M. Mishra, Adsorption kinetics and thermodynamics of COD removal of acid pre-treated petrochemical wastewater by using granular activated carbon, Sep. Sci. Technol., 49 (2014) 1067–1075.
  48. F. Kargı, M.Y. Pamukoglu, Adsorbent supplemented biological treatment of pre-treated landfill leachate by fed-batch operation, Bioresour. Technol., 94 (2004) 285–291.
  49. K. Srđan, S. Dragoslav, M. Dragan, T. Slaviša, M. Slobodan, K. Slobodan, A. Ljiljana, Effects of reactive filters based on modified zeolite in dairy industry wastewater treatment process, Chem. Ind. Chem. Eng. Q., 19 (2013) 583–592.
  50. N. Soheila Saghaian, K. Jahangir Abedi, B. Kiachehr, M.-F. Saman, J. Koupai, Reduction of urban storm-runoff pollution using porous concrete containing iron slag adsorbent, J. Environ. Eng., 142 (2016) 1–7.
  51. B. Zhao, Y. Zhang, X. Dou, H. Yuan, M. Yang, Granular ferric hydroxide adsorbent for phosphate removal: demonstration preparation and field study, Water Sci. Technol., 72 (2015) 2179–2186.
  52. N. Pariona, A.I. Martínez, H. Hernandez-Flores, R. Clark-Tapia, Effect of magnetite nanoparticles on the germination and early growth of Quercus macdougallii, Sci. Total Environ., 575 (2017) 869–875.
  53. M. Askary, M.R. Amirjani, T. Saberi, Comparison of the effects of nano-iron fertilizer with iron-chelate on growth parameters and some biochemical properties of Catharanthus roseus, J. Plant Nutr., 40 (2017) 974–982.