References

  1. J. Lyu, L. Zhu, C. Burda, Optimizing nanoscale TiO2 for adsorption-enhanced photocatalytic degradation of lowconcentration air pollutants, ChemCatChem, 5 (2013) 3114–3123.
  2. S. Yadav, V. Srivastava, S. Banerjee, C.H. Weng, Y.C. Sharma, Adsorption characteristics of modified sand for the removal of hexavalent chromium ions from aqueous solutions: kinetic, thermodynamic and equilibrium studies, Catena, 100 (2013) 120–127.
  3. M. Bhaumik, A. Maity, V.V. Srinivasu, M.S. Onyango, Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers, Chem. Eng. J., 18 (2012) 323–333.
  4. E. Petala, M. Baikousi, M.A. Karakassides, G. Zoppellaro, J. Filip, J. Tuček, K.C. Vasilopoulos, J. Pechoušek, R. Zbořil, Synthesis, physical properties and application of the zero-valent iron/ titanium dioxide heterocomposite having high activity for the sustainable photocatalytic removal of hexavalent chromium in water, Phys. Chem. Chem. Phys., 18 (2016) 10637–10646.
  5. V.K. Gupta, A. Rastogi, A. Nayak, Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material, J. Colloid Interface Sci., 342 (2010) 135–141.
  6. R. Karthik, S. Meenakshi, Adsorption study on removal of Cr(VI) ions by polyaniline composite, Desal. Wat. Treat., 54 (2015) 3083–3093.
  7. R. Saha, B. Saha, Removal of hexavalent chromium from contaminated water by adsorption using mango leaves (Mangifera indica), Desal. Wat. Treat., 52 (2014) 1928–1936.
  8. Y. Liu, D. Yuan, J. Yan, Q. Li, T. Ouyang, Electrochemical removal of chromium from aqueous solutions using electrodes of stainless steel nets coated with single wall carbon nanotubes, J. Hazard. Mater., 186 (2011) 473–480.
  9. A.S. Dharnaik, P.K. Ghosh, Hexavalent chromium [Cr(VI)] removal by the electrochemical ion-exchange process, Environ. Technol., 35 (2014) 2272–2279.
  10. S. Sadeghi, M.R. Alavi Moghaddam, M. Arami, Improvement of electrocoagulation process on hexavalent chromium removal with the use of polyaluminum chloride as coagulant, Desal. Wat. Treat., 52 (2014) 4818–4829.
  11. F. Akbal, S. Camcı, Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation, Desalination, 269 (2011) 214–222.
  12. L. Alvarado, I.R. Torres, A. Chen, Integration of ion exchange and electrodeionization as a new approach for the continuous treatment of hexavalent chromium wastewater, Sep. Purif. Technol., 105 (2013) 55–62.
  13. R. Gayathri, P.S. Kumar, Recovery and reuse of hexavalent chromium from aqueous solutions by a hybrid technique of electrodialysis and ion exchange, Braz. J. Chem. Eng., 27 (2010) 71–78.
  14. G. Basaran, D. Kavak, N. Dizge, Y. Asci, M. Solener, B. Ozbey, Comparative study of the removal of nickel (II) and chromium (VI) heavy metals from metal plating wastewater by two nanofiltration membranes, Desal. Wat. Treat., 57 (2016) 21870–21880.
  15. S. Habibi, A. Nematollahzadeh, S.A. Mousavi, Nano-scale modification of polysulfone membrane matrix and the surface for the separation of chromium ions from water, Chem. Eng. J., 267 (2015) 306–316.
  16. C. Tang, Y. Huang, Z. Zhang, J. Chen, H. Zeng, Y.H. Huang, Rapid removal of selenate in a zero-valent iron/Fe3O4/Fe2+ synergetic system, Appl. Catal., B, 184 (2016) 320–327.
  17. R. Singh, V. Misra, R.P. Singh, Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil, J. Nanopart. Res., 13 (2011) 4063–4073.
  18. I.H. Yoon, S. Bang, K.W. Kim, M.G. Kim, S.Y. Park, W.K. Choi, Selenate removal by zero-valent iron in oxic condition: the role of Fe(II) and selenate removal mechanism, Environ. Sci. Pollut. Res., 23 (2016) 1081–1090.
  19. X. Wang, L. Wang, J. Li, J. Qiu, C. Cai, H. Zhang, Degradation of acid orange 7 by persulfate activated with zero valent iron in the presence of ultrasonic irradiation, Sep. Purif. Technol., 122 (2014) 41–46.
  20. H. Chen, Y. Cao, E. Wei, T. Gong, Q. Xian, Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water, Chemosphere, 146 (2016) 32–39.
  21. Y. Lubphoo, J.M. Chyan, N. Grisdanurak, C.H. Liao, Influence of Pd–Cu on nanoscale zero–valent iron supported for selective reduction of nitrate, J. Taiwan Inst. Chem. Eng., 59 (2016) 285–294.
  22. A.M.E. Khalil, O. Eljamal, S. Jribi, N. Matsunaga, Promoting nitrate reduction kinetics by nanoscale zero valent iron in water via copper salt addition, Chem. Eng. J., 287 (2016) 367–380.
  23. X. Guo, Z. Yang, H. Dong, X. Guan, Q. Ren, X. Lv, X. Jin, Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water, Water Res., 88 (2016) 671–680.
  24. M.J. López-Muñoz, A. Arencibia, Y. Segura, J.M. Raez, Removal of As(III) from aqueous solutions through simultaneous photocatalytic oxidation and adsorption by TiO2 and zerovalent iron, Catal. Today, 280 (2017) 149–154.
  25. A. Shimizu, M. Tokumura, K. Nakajima, Y. Kawase, Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: roles of decomposition by the Fenton reaction and adsorption/precipitation, J. Hazard. Mater., 201 (2012) 60–67.
  26. Y.J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co– Cr–Fe–Si alloy systems with multi-principal elements, Mater. Chem. Phys., 103 (2007) 41–46.
  27. Z. Lu, F. Chen, M. He, M. Song, Z. Ma, W. Shi, Y. Yan, Microwave synthesis of a novel magnetic imprinted TiO2 photocatalyst with excellent transparency for selective photodegradation of enrofloxacin hydrochloride residues solution, Chem. Eng. J., 249 (2014) 15–26.
  28. F. Luo, Z. Chen, M. Megharaj, R. Naidu, Simultaneous removal of trichloroethylene and hexavalent chromium by green synthesized agarose-Fe nanoparticles hydrogel, Chem. Eng. J., 294 (2016) 290–297.
  29. S. Rajput, C.U. Pittman, D. Mohan, Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water, J. Colloid Interface Sci., 468 (2016) 334–346.
  30. S.R. Chowdhury, E.K. Yanful, A.R. Pratt, Chemical states in XPS and Raman analysis during removal of Cr(VI) from contaminated water by mixed maghemite–magnetite nanoparticles, J. Hazard. Mater., 235 (2012) 246–256.
  31. Y. Mu, H. Wu, Z. Ai, Negative impact of oxygen molecular activation on Cr(VI) removal with core–shell Fe@Fe2O3 nanowires, J. Hazard. Mater., 298 (2015) 1–10.
  32. J. Hu, I.M.C. Lo, G. Chen, Performance and mechanism of chromate(VI) adsorption by δ-FeOOH-coated maghemite (γ-Fe2O3) nanoparticles, Sep. Purif. Technol., 58 (2007) 76–82.
  33. L. Hao, T. Ouyang, L. Lai, Y.X. Liu, S. Chen, H. Hu, C.T. Chang, J.J. Wang, Temperature effects on arsenate adsorption onto goethite and its preliminary application to arsenate removal from simulative geothermal water, RSC Adv., 4 (2014) 51984–51990.
  34. B. Geng, Z. Jin, T. Li, X. Qi, Preparation of chitosan-stabilized Fe0 nanoparticles for removal of hexavalent chromium in water, Sci. Total Environ., 407 (2009) 4994–5000.
  35. Y. Zhang, Y. Li, J. Li, G. Sheng, Y. Zhang, X. Zheng, Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron, Chem. Eng. J., 185 (2012) 243–249.