References
- J. Lyu, L. Zhu, C. Burda, Optimizing nanoscale TiO2 for
adsorption-enhanced photocatalytic degradation of lowconcentration
air pollutants, ChemCatChem, 5 (2013) 3114–3123.
- S. Yadav, V. Srivastava, S. Banerjee, C.H. Weng, Y.C. Sharma,
Adsorption characteristics of modified sand for the removal
of hexavalent chromium ions from aqueous solutions: kinetic,
thermodynamic and equilibrium studies, Catena, 100 (2013)
120–127.
- M. Bhaumik, A. Maity, V.V. Srinivasu, M.S. Onyango, Removal
of hexavalent chromium from aqueous solution using
polypyrrole-polyaniline nanofibers, Chem. Eng. J., 18 (2012)
323–333.
- E. Petala, M. Baikousi, M.A. Karakassides, G. Zoppellaro, J. Filip,
J. Tuček, K.C. Vasilopoulos, J. Pechoušek, R. Zbořil, Synthesis,
physical properties and application of the zero-valent iron/
titanium dioxide heterocomposite having high activity for the
sustainable photocatalytic removal of hexavalent chromium in
water, Phys. Chem. Chem. Phys., 18 (2016) 10637–10646.
- V.K. Gupta, A. Rastogi, A. Nayak, Adsorption studies on the
removal of hexavalent chromium from aqueous solution using
a low cost fertilizer industry waste material, J. Colloid Interface
Sci., 342 (2010) 135–141.
- R. Karthik, S. Meenakshi, Adsorption study on removal of
Cr(VI) ions by polyaniline composite, Desal. Wat. Treat., 54
(2015) 3083–3093.
- R. Saha, B. Saha, Removal of hexavalent chromium from
contaminated water by adsorption using mango leaves
(Mangifera indica), Desal. Wat. Treat., 52 (2014) 1928–1936.
- Y. Liu, D. Yuan, J. Yan, Q. Li, T. Ouyang, Electrochemical
removal of chromium from aqueous solutions using electrodes
of stainless steel nets coated with single wall carbon nanotubes,
J. Hazard. Mater., 186 (2011) 473–480.
- A.S. Dharnaik, P.K. Ghosh, Hexavalent chromium [Cr(VI)]
removal by the electrochemical ion-exchange process, Environ.
Technol., 35 (2014) 2272–2279.
- S. Sadeghi, M.R. Alavi Moghaddam, M. Arami, Improvement
of electrocoagulation process on hexavalent chromium removal
with the use of polyaluminum chloride as coagulant, Desal.
Wat. Treat., 52 (2014) 4818–4829.
- F. Akbal, S. Camcı, Copper, chromium and nickel removal from
metal plating wastewater by electrocoagulation, Desalination,
269 (2011) 214–222.
- L. Alvarado, I.R. Torres, A. Chen, Integration of ion exchange
and electrodeionization as a new approach for the continuous
treatment of hexavalent chromium wastewater, Sep. Purif.
Technol., 105 (2013) 55–62.
- R. Gayathri, P.S. Kumar, Recovery and reuse of hexavalent
chromium from aqueous solutions by a hybrid technique of
electrodialysis and ion exchange, Braz. J. Chem. Eng., 27 (2010)
71–78.
- G. Basaran, D. Kavak, N. Dizge, Y. Asci, M. Solener, B.
Ozbey, Comparative study of the removal of nickel (II) and
chromium (VI) heavy metals from metal plating wastewater
by two nanofiltration membranes, Desal. Wat. Treat., 57 (2016)
21870–21880.
- S. Habibi, A. Nematollahzadeh, S.A. Mousavi, Nano-scale
modification of polysulfone membrane matrix and the surface
for the separation of chromium ions from water, Chem. Eng. J.,
267 (2015) 306–316.
- C. Tang, Y. Huang, Z. Zhang, J. Chen, H. Zeng, Y.H. Huang,
Rapid removal of selenate in a zero-valent iron/Fe3O4/Fe2+
synergetic system, Appl. Catal., B, 184 (2016) 320–327.
- R. Singh, V. Misra, R.P. Singh, Synthesis, characterization and
role of zero-valent iron nanoparticle in removal of hexavalent
chromium from chromium-spiked soil, J. Nanopart. Res., 13
(2011) 4063–4073.
- I.H. Yoon, S. Bang, K.W. Kim, M.G. Kim, S.Y. Park, W.K. Choi,
Selenate removal by zero-valent iron in oxic condition: the role
of Fe(II) and selenate removal mechanism, Environ. Sci. Pollut.
Res., 23 (2016) 1081–1090.
- X. Wang, L. Wang, J. Li, J. Qiu, C. Cai, H. Zhang, Degradation
of acid orange 7 by persulfate activated with zero valent iron in
the presence of ultrasonic irradiation, Sep. Purif. Technol., 122
(2014) 41–46.
- H. Chen, Y. Cao, E. Wei, T. Gong, Q. Xian, Facile synthesis of
graphene nano zero-valent iron composites and their efficient
removal of trichloronitromethane from drinking water,
Chemosphere, 146 (2016) 32–39.
- Y. Lubphoo, J.M. Chyan, N. Grisdanurak, C.H. Liao, Influence
of Pd–Cu on nanoscale zero–valent iron supported for selective
reduction of nitrate, J. Taiwan Inst. Chem. Eng., 59 (2016)
285–294.
- A.M.E. Khalil, O. Eljamal, S. Jribi, N. Matsunaga, Promoting
nitrate reduction kinetics by nanoscale zero valent iron in water
via copper salt addition, Chem. Eng. J., 287 (2016) 367–380.
- X. Guo, Z. Yang, H. Dong, X. Guan, Q. Ren, X. Lv, X. Jin, Simple
combination of oxidants with zero-valent-iron (ZVI) achieved
very rapid and highly efficient removal of heavy metals from
water, Water Res., 88 (2016) 671–680.
- M.J. López-Muñoz, A. Arencibia, Y. Segura, J.M. Raez, Removal
of As(III) from aqueous solutions through simultaneous
photocatalytic oxidation and adsorption by TiO2 and zerovalent
iron, Catal. Today, 280 (2017) 149–154.
- A. Shimizu, M. Tokumura, K. Nakajima, Y. Kawase, Phenol
removal using zero-valent iron powder in the presence of
dissolved oxygen: roles of decomposition by the Fenton
reaction and adsorption/precipitation, J. Hazard. Mater., 201
(2012) 60–67.
- Y.J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, Anomalous
decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–
Cr–Fe–Si alloy systems with multi-principal elements, Mater.
Chem. Phys., 103 (2007) 41–46.
- Z. Lu, F. Chen, M. He, M. Song, Z. Ma, W. Shi, Y. Yan, Microwave
synthesis of a novel magnetic imprinted TiO2 photocatalyst
with excellent transparency for selective photodegradation of
enrofloxacin hydrochloride residues solution, Chem. Eng. J.,
249 (2014) 15–26.
- F. Luo, Z. Chen, M. Megharaj, R. Naidu, Simultaneous removal
of trichloroethylene and hexavalent chromium by green
synthesized agarose-Fe nanoparticles hydrogel, Chem. Eng. J.,
294 (2016) 290–297.
- S. Rajput, C.U. Pittman, D. Mohan, Magnetic magnetite (Fe3O4)
nanoparticle synthesis and applications for lead (Pb2+) and
chromium (Cr6+) removal from water, J. Colloid Interface Sci.,
468 (2016) 334–346.
- S.R. Chowdhury, E.K. Yanful, A.R. Pratt, Chemical states
in XPS and Raman analysis during removal of Cr(VI)
from contaminated water by mixed maghemite–magnetite
nanoparticles, J. Hazard. Mater., 235 (2012) 246–256.
- Y. Mu, H. Wu, Z. Ai, Negative impact of oxygen molecular
activation on Cr(VI) removal with core–shell Fe@Fe2O3
nanowires, J. Hazard. Mater., 298 (2015) 1–10.
- J. Hu, I.M.C. Lo, G. Chen, Performance and mechanism of
chromate(VI) adsorption by δ-FeOOH-coated maghemite
(γ-Fe2O3) nanoparticles, Sep. Purif. Technol., 58 (2007) 76–82.
- L. Hao, T. Ouyang, L. Lai, Y.X. Liu, S. Chen, H. Hu, C.T.
Chang, J.J. Wang, Temperature effects on arsenate adsorption
onto goethite and its preliminary application to arsenate
removal from simulative geothermal water, RSC Adv., 4 (2014)
51984–51990.
- B. Geng, Z. Jin, T. Li, X. Qi, Preparation of chitosan-stabilized
Fe0 nanoparticles for removal of hexavalent chromium in water,
Sci. Total Environ., 407 (2009) 4994–5000.
- Y. Zhang, Y. Li, J. Li, G. Sheng, Y. Zhang, X. Zheng, Enhanced
Cr(VI) removal by using the mixture of pillared bentonite and
zero-valent iron, Chem. Eng. J., 185 (2012) 243–249.