References

  1. T.A. Ternes, A. Joss, Human Pharmaceuticals, Hormones and Fragrances, The Challenge of Micropollutants in Urban Water Management, IWA Publishing, London, 2006.
  2. R.P. Schwarzenbach, B.I. Escher, K. Fenner, T.B. Hofstetter, C.A. Johnson, U. von Gunten, B. Wehrli, The challenge of micropollutants in aquatic systems, Science, 313 (2006) 1072–1077.
  3. Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 473–474 (2014) 619–641.
  4. B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring, Water Res., 72 (2015) 3–27.
  5. M.O. Barbosa, N.F.F. Moreira, A.R. Ribeiro, M.F.R. Pereira, A.M.T. Silva, Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495, Water Res., 94 (2016) 257–279.
  6. G.V. Buxton, C.L. Greenstock, W.P. Helman, W.P. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
  7. NDRL/NIST Solution Kinetics Database on the Web, 2002. Available at: http://kinetics.nist.gov/solution/
  8. V.J. Pereira, K.G. Linden, H.S. Weinberg, Evaluation of UV irradiation for photolytic and oxidative degradation of pharmaceutical compounds in water, Water Res., 41 (2007) 4413–4423.
  9. I. Kim, N. Yamashita, H. Tanaka, Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments, Chemosphere, 77 (2009) 518–525.
  10. F. Yuan, C. Hu, X. Hu, J. Qu, M. Yang, Degradation of selected pharmaceuticals in aqueous solution with UV and UV/H2O2, Water Res., 43 (2009) 1766–1774.
  11. F.L. Rosario-Ortiz, E.C. Wert, S.A. Snyder, Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater, Water Res., 44 (2010) 1440–1448.
  12. S. Sanches, M.T. Barreto Crespo, V.J. Pereira, Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes, Water Res., 44 (2010) 1809–1818.
  13. C. Baeza, D.R.U. Knappe, Transformation kinetics of biochemically active compounds in low-pressure UV photolysis and UV/H2O2 advanced oxidation processes, Water Res., 45 (2011) 4531–4543.
  14. I.A. Katsoyiannis, S. Canonica, U. von Gunten, Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2, Water Res., 45 (2011) 3811–3822.
  15. K. Lekkerkerker-Teunissen, M.J. Benotti, S.A. Snyder, H.C. van Dijk, Transformation of atrazine, carbamazepine, diclofenac and sulfamethoxazole by low and medium pressure UV and UV/H2O2 treatment, Sep. Purif. Technol., 96 (2012) 33–43.
  16. Z. Shu, J.R. Bolton, M. Belosevic, M.G. El Din, Photodegradation of emerging micropollutants using the medium-pressure UV/H2O2 advanced oxidation process, Water Res., 47 (2013) 2881–2889.
  17. B.S. Souza, R.F. Dantas, A. Cruz, C. Sans, S. Esplugas, M. Dezotti, Photochemical oxidation of municipal secondary effluents at low H2O2 dosage: study of hydroxyl radical scavenging and process performance, Chem. Eng. J., 237 (2014) 268–276.
  18. M.G. Antoniou, H.R. Andersen, Comparison of UVC/S2O82– with UVC/H2O2 in terms of efficiency and cost for the removal of micropollutants from groundwater, Chemosphere, 119 (2015) S81–S88.
  19. C. Afonso-Olivares, C. Fernández-Rodríguez, R.J. Ojeda- González, Z. Sosa-Ferrera, J.J. Santana-Rodríguez, J.M. Rodríguez Doña, Estimation of kinetic parameters and UV doses necessary to remove twenty-three pharmaceuticals from pre-treated urban wastewater by UV/H2O2, J. Photochem. Photobiol., A, 329 (2016) 130–138.
  20. Y. Lee, D. Gerrity, M. Lee, S. Gamage, A. Pisarenko, R. Trenholm, S. Canonica, S. Snyder, U. von Gunten, Organic contaminant abatement in reclaimed water by UV/H2O2 and a combined process consisting of O3/H2O2 followed by UV/H2O2: prediction of abatement efficiency, energy consumption and byproduct formation, Environ. Sci. Technol., 50 (2016) 3809–3819.
  21. O. Rosaz, C. Vidal, C. Baeza, W.F. Jardim, A. Rossner, H.D. Mansilla, Organic micropollutants (OMPs) in natural waters: oxidation by UV/H2O2 treatment and toxicity assessment, Water Res., 98 (2016) 109–118.
  22. G. Matafonova, N. Christofi, V. Batoev, E. Sosnin, Degradation of chlorophenols in aqueous media using UV XeBr excilamp in a flow-through reactor, Chemosphere, 70 (2008) 1124–1127.
  23. M. Gómez, M.D. Murcia, E. Gómez, J.L. Gómez, N. Christofi, Degradation of phenolic pollutants using KrCl and XeBr excilamps in the presence of dye: a comparative study, Desalination, 274 (2011) 156–163.
  24. M. Gomez, M.D. Murcia, J.L. Gomez, E. Gomez, M.F. Maximo, A. Garcia, A KrCl exciplex flow-through photoreactor for degrading 4-chlorophenol: experimental and modelling, Appl. Catal., B, 117–118 (2012) 194–203.
  25. G. Matafonova, V. Batoev, Comparison of UV and UV/H2O2 treatments using excilamps for removal of monochlorophenols in the molecular and anionic form, J. Environ. Sci. Health, Part A, 47 (2012) 2077–2083.
  26. G. Matafonova, V. Batoev, Recent progress on application of UV excilamps for degradation of organic pollutants and microbial inactivation, Chemosphere, 89 (2012) 637–647.
  27. M.D. Murcia, M. Gómez, E. Gómez, J.L. Gómez, A.M. Hidalgo, N. Christofi, A new substrate and by-product kinetic model for the photodegradation of 4-chlorophenol with KrCl exciplex UV lamp and hydrogen peroxide, Chem. Eng. J., 187 (2012) 36–44.
  28. O.N. Tchaikovskaya, E.A. Karetnikova, I.V. Sokolova, G.V. Mayer, D.A. Shvornev, The phototransformation of 4-chloro-2-methylphenoxyacetic acid under KrCl and XeBr excilamps irradiation in water, J. Photochem. Photobiol., A, 228 (2012) 8–14.
  29. N.O. Vershinin, I.V. Sokolova, O.N. Tchaikovskaya, K.A. Nevolina, Features of the photodegradation of 2,4-dichlorophenoxyacetic acid under the influence of radiation from KrCl excilamps, J. Appl. Spectrosc., 82 (2015) 831–834.
  30. S. Al-Gharabli, P. Engeßer, D. Gera, S. Klein, T. Oppenländer, Engineering of a highly efficient Xe2*-excilamp (xenon excimer lamp, λmax = 172 nm, η = 40%) and qualitative comparison to a low-pressure mercury lamp (LP-Hg, λ = 185/254 nm) for water purification, Chemosphere, 144 (2016) 811–815.
  31. J.R. Bolton, J.E. Valladares, J.P. Zanin, W.J. Cooper, M.G. Nickelsen, D.C. Kajdi, T.D. Waite, C.N. Kurucz, Figures-ofmerit for advanced oxidation technologies: a comparison of homogeneous UV/H2O2, heterogeneous TiO2 and electron beam processes, J. Adv. Oxid. Technol., 3 (1998) 174–181.
  32. J.R. Bolton, S.R. Cater, Homogenous Photodegradation of Pollutants in Contaminated Water: An Introduction, Chapter 33, G.R. Helz, R.G. Zepp, D.G. Crosby, Eds., Surface and Aquatic Environmental Photochemistry, CRC-Press, Boca Raton, 1994, p. 476.
  33. J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman, Figures-of-merit for the technical development and application of advanced oxidation processes, J. Adv. Oxid. Technol., 1 (1996) 13–17.
  34. J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman, Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solardriven systems (IUPAC Technical Report), Pure Appl. Chem., 73 (2001) 627.
  35. O. Autin, J. Hart, P. Jarvis, J. MacAdam, S.A. Parsons, B. Jefferson, Comparison of UV/TiO2 and UV/H2O2 processes in an annular photoreactor for removal of micropollutants: Influence of water parameters on metaldehyde removal, quantum yields and energy consumption, Appl. Catal., B, 138–139 (2013) 268–275.
  36. K. Lekkerkerker-Teunissen, A.H. Knol, L.P. van Altena, C.J. Houtman, J.Q.J.C. Verberk, J.C. van Dijk, Serial ozone/peroxide/ low pressure UV treatment for synergistic and effective organic micropollutant conversion, Sep. Purif. Technol., 100 (2012) 22–29.
  37. R.C.H.M. Hofman-Caris, D.J.H. Harmsen, E.F. Beerendonk, T.H. Knol, C.J. Houtman, D.H. Metz, B.A. Wols, Prediction of advanced oxidation performance in various pilot UV/H2O2 reactor systems with MP- and LP- and DBD-UV lamps, Chem. Eng. J., 210 (2012) 520–528.
  38. K. Lekkerkerker-Teunissen, A.H. Knol, J.G. Derks, M.B. Heringa, C.J. Houtman, C.H.M. Hofman-Caris, E.F. Beerendonk, A. Reus, J.Q.J.C. Verberk, J.C. van Dijk, Pilot plant results with three different types of UV lamps for advanced oxidation, Ozone Sci. Eng., 35 (2013) 38–48.
  39. G.F. IJpelaar, D.J.H. Harmsen, E.F. Beerendonk, R.C. van Leerdam, D.H. Metz, A.H. Knol, A. Fulmer, S. Krijnen, Comparison of low pressure and medium pressure UV lamps or UV/H2O2 treatment of natural waters containing micro pollutants, Ozone Sci. Eng., 32 (2010) 329–337.
  40. J.A. Khan, X. He, N.S. Shah, H.M. Khan, E. Hapeshi, D. Fatta- Kassinos, D.D. Dionysiou, Kinetic and mechanism investigation on the photochemical degradation of atrazine with activated H2O2, S2O8 2– and HSO5 –, Chem. Eng. J., 252 (2014) 393–403.
  41. S. Miralles-Cuevas, D. Darowna, A. Wanag, S. Mozia, S. Malato, I. Oller, Comparison of UV/H2O2, UV/S2O82–, solar/Fe(II)/H2O2 and solar/Fe(II)/S2O82– at pilot plant scale for the elimination of micro-contaminants in natural water: an economic assessment, Chem. Eng. J., 310 (2017) 514–524.
  42. S. Canonica, L. Meunier, U. von Gunten, Phototransformation of selected pharmaceuticals during UV treatment of drinking water, Water Res., 42 (2008) 121–128.
  43. M. Cho, H. Chung, W. Choi, J. Yoon, Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection, Water Res., 38 (2004) 1069–1077.
  44. H. Mamane, H. Shemer, K.G. Linden, Inactivation of E. coli, B. subtilis spores, and MS2, T4, and T7 phage using UV/H2O2 advanced oxidation, J. Hazard. Mater., 146 (2007) 479–486.
  45. J.R. Bolton, K.G. Linden, Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments, J. Environ. Eng., 129 (2003) 209–215.
  46. T.E. Doll, F.H. Frimmel, Fate of pharmaceuticals – photodegradation by simulated sunlight, Chemosphere, 52 (2003) 1757–1769.
  47. M.W. Lam, S.A. Mabury, Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters, Aquat. Sci., 67 (2005) 177–188.
  48. M. Zhan, X. Yang, Q. Xian, L. Kong, Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances, Chemosphere, 63 (2006) 378–386.
  49. J.L. Acero, K. Stemmler, U. von Gunten, Degradation kinetics of atrazine and its degradation products with ozone and OH radicals: a predictive tool for drinking water treatment, Environ. Sci. Technol., 34 (2000) 591–597.
  50. D.E. Latch, J.L. Packer, B.L. Stender, J. van Overbeke, W.A. Arnold, K. Mcneill, Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products, Environ. Toxicol. Chem., 24 (2005) 517–525.
  51. J.C. Crittenden, S. Hu, D.W. Hand, S.A. Green, A kinetic model for H2O2/UV process in a completely mixed batch reactor, Water Res., 33 (1999) 2315–2328.
  52. Y. Lester, H. Mamane, D. Avisar, Enhanced removal of micropollutants from groundwater, using pH modification coupled with photolysis, Water Air Soil Pollut., 223 (2012) 1639–1647.
  53. USEPA, EPA 815-R-06-007, Ultraviolet Disinfection Guidance Manual for the Final Long Term 2 Enhanced Surface Water Treatment Rule, 2006.