References

  1. T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev., 43 (2014) 7520–7535.
  2. A. Kubacka, M.F. García, G. Colón, Advanced nanoarchitectures for solar photocatalytic applications, Chem. Rev., 112 (2012) 1555–1614.
  3. M.L. Marin, L.S. Juanes, A. Arques, A.M. Amat, M.A. Miranda, Organic photocatalysts for the oxidation of pollutants and model compounds, Chem. Rev., 112 (2012) 1710–1750.
  4. J.C. Colmenares, R. Luque, Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds, Chem. Soc. Rev., 43 (2014) 765–778.
  5. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev., 114 (2014) 9919–9986.
  6. R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects, Chem. Rev., 114 (2014) 9824–9852.
  7. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Titanium dioxidebased nanomaterials for photocatalytic fuel generations, Chem. Rev., 114 (2014) 9987–10043.
  8. D. Venieri, I. Gounaki, V. Binas, A. Zachopoulos, G. Kiriakidis, D. Mantzavinos, Inactivation of MS2 coliphage in sewage by solar photocatalysis using metal-doped TiO2, Appl. Catal., B, 178 (2015) 54–64.
  9. Z. Zhao, Y. Wang, J. Xu, C. Shang, Y. Wang, AgCl-loaded mesoporous anatase TiO2 with large specific surface area for enhancing photocatalysis, Appl. Surf. Sci., 351 (2015) 416–424.
  10. Z. Zhang, W. Wang, E. Gao, S. Sun, L. Zhang, Photocatalysis coupled with thermal effect induced by SPR on Ag-loaded Bi2WO6 with enhanced photocatalytic activity, J. Phys. Chem. C, 116 (2012) 25898–25903.
  11. Y. Luo, G. Tan, G. Dong, H. Ren, A. Xia, Effects of structure, morphology, and up-conversion on Nd-doped BiVO4 system with high photocatalytic activity, Ceram. Int., 41 (2015) 3259–3268.
  12. J. Bae, J.B. Han, X.M. Zhang, M. Wei, X. Duan, Y. Zhang, Z.L. Wang, ZnO nanotubes grown at low temperature using Ga as catalysts and their enhanced photocatalytic activities, J. Phys. Chem. C, 113 (2009) 10379–10383.
  13. Z. Zhang, L. Zhang, M.N. Hedhili, H. Zhang, P. Wang, Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting, Nano Lett., 13 (2013) 14–20.
  14. N. Kumar, V.K. Komarala, V. Dutta, In-situ synthesis of Au–CdS plasmonic photocatalyst by continuous spray pyrolysis and its visible light photocatalysis, Chem. Eur. J., 236 (2014) 66–74.
  15. B.H. Nguyen, V.H. Nguyen, Recent advances in research on plasmonic enhancement of photocatalysis, Adv. Nat. Sci.: Nanosci. Nanotechnol., 6 (2015) 043001.
  16. L. Touahir, A.T. Jenkins, R. Boukherroub, A.C. Gouget- Laemmel, J.N. Chazalviel, J. Peretti, F. Ozanam, S. Szunerits, Surface plasmon-enhanced fluorescence spectroscopy on silver based SPR substrates, J. Phys. Chem. C, 114 (2010) 22582–22589.
  17. J. Shu, Z. Wang, G. Xia, Y. Zheng, L. Yang, W. Zhang, Onepot synthesis of AgCl@Ag hybrid photocatalyst with high photocatalytic activity and photostability under visible light and sunlight irradiation, Chem. Eur. J., 252 (2014) 374–381.
  18. P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, M.H. Whangbo, Ag@AgCl: a highly efficient and stable photocatalyst active under visible light, Angew. Chem. Int. Ed., 47 (2008) 7931–7933.
  19. Y. Tang, Z. Jiang, G. Xing, A. Li, P.D. Kanhere, Y. Zhang, T.C. Sum, S. Li, X. Chen, Z. Dong, Efficient Ag@AgCl cubic cage photocatalysts profit from ultrafast plasmon-induced electron transfer processes, Adv. Funct. Mater., 23 (2013) 2932–2940.
  20. R. Dong, B. Tian, C. Zeng, T. Li, T. Wang, J. Zhang, Ecofriendly synthesis and photocatalytic activity of uniform cubic Ag@AgCl plasmonic photocatalyst, J. Phys. Chem. C, 117 (2013) 213–220.
  21. P. Wang, B. Huang, Z. Lou, X. Zhang, X. Qin, Y. Dai, Z. Zheng, X. Wang, Synthesis of highly efficient Ag@AgCl plasmonic photocatalysts with various structures, Chem. Eur. J., 16 (2010) 538–544.
  22. G. Jiang, X. Li, Z. Wei, T. Jiang, X. Du, W. Chen, Growth of N-doped BiOBr nanosheets on carbon fibers for photocatalytic degradation of organic pollutants under visible light irradiation, Powder Technol. 260 (2014) 84–89.
  23. G. Jiang, Z. Wei, H. Chen, X. Du, L. Li, Y. Liu, Q. Huang, W. Chen, Preparation of novel carbon nanofibers with BiOBr and AgBr decoration for the photocatalytic degradation of rhodamine B, RSC Adv., 5 (2015) 30433–30437.
  24. Z. Wei, G. Jiang, L. Shen, X. Li, X. Wang, W. Chen, Preparation of Mn-doped BiOBr microspheres for efficient visible-lightinduced photocatalysis, MRS Commun., 3 (2013) 145–149.
  25. J. Low, J. Yu, Q. Li, B. Cheng, Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene co-modified Bi2WO6 nanosheets, Phys. Chem. Chem. Phys., 16 (2014) 1111–1120.
  26. G. Jiang, X. Wang, Z. Wei, X. Li, X. Xi, R. Hu, B. Tang, R. Wang, S. Wang, T. Wang, W. Chen, Photocatalytic properties of hierarchical structures based on Fe-doped BiOBr hollow microspheres, J. Mater. Chem. A, 1 (2013) 2406–2410.
  27. D. Chen, T. Li, Q. Chen, J. Gao, J. Li, X. Li, R. Zhang, J. Sun, L. Gao, Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates, Nanoscale, 4 (2012) 5431–5439.
  28. S. Zhang, J. Li, X. Wang, Y. Huang, M. Zeng, J. Xu, In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C3N4 porous nanosheets as plasmonic photocatalyst for highly efficient visible-light photocatalysis, ACS Appl. Mater. Interfaces, 6 (2014) 22116–22125.
  29. W.J. Ong, L.K. Putri, L.L. Tan, S.P. Chai, S.T. Yong, Heterostructured AgX/g-C3N4 (X = Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide, Appl. Catal., B, 180 (2016) 530–543.
  30. H.A. Zadeh, E. Rahimpour, Utilizing of Ag@AgCl@graphene oxide@Fe3O4 nanocomposite as a magnetic plasmonic nanophotocatalyst in light-initiated H2O2 generation and chemiluminescence detection of nitrite, Talanta, 144 (2015) 769–777.
  31. H. Li, Y. Sun, B. Cai, S. Gan, D. Han, L, Niu, T, Wu, Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical and photocatalytic performance, Appl. Catal., B, 170–171 (2015) 206–214.
  32. R. Wang, G. Jiang, X. Wang, R. Hu, X. Xi, S. Bao, Y. Zhou, T. Tong, S. Wang, T. Wang, W. Chen, Efficient visible-lightinduced photocatalytic activity over the novel Ti-doped BiOBr microspheres, Powder Technol., 228 (2012) 258–263.
  33. T. Xiong, H. Zhang, Y. Zhang, F. Dong, Ternary Ag/AgCl/BiOIO3 composites for enhanced visible-light-driven photocatalysis, Chin. J. Catal., 36 (2015) 2155–2163.
  34. S.Y. Zhang, X. Xiao, M. Lu, Z.Q. Li, Zn3V2O7(OH)2·2H2O and Zn3(VO4)2 3D microspheres as anode materials for lithium-ion batteries, J. Mater. Sci., 48 (2013) 3679–3685.
  35. F. Wang, W. Wu, X. Sun, S. Song, Y. Xing, J. Wang, D. Yu, Z. Su, Synthesis of hexagonal Zn3(OH)2V2O7·2H2O nanoplates by a hydrothermal approach: magnetic and photocatalytic properties, Mater. Charact., 86 (2013) 139–145.
  36. R. Shi, Y. Wang, F. Zhou, Y. Zhu, Zn3V2O7(OH)2(H2O)2 and Zn3V2O8 nanostructures: controlled fabrication and photocatalytic performance, J. Mater. Chem., 21 (2011) 6313–6320.
  37. D. Chen, M. Liu, Q. Chen, L. Ge, B. Fan, H. Wang, H. Lu, D. Yang, R. Zhang, Q. Yan, G. Shao, J. Sun, L. Gao, Large-scale synthesis and enhanced visible-light-driven photocatalytic performance of hierarchical Ag/AgCl nanocrystals derived from freeze-dried PVP–Ag+ hybrid precursors with porosity, Appl. Catal., B, 144 (2014) 394–407.
  38. G. Jiang, R. Wang, X. Wang, X. Xi, R. Hu, Y. Zhou, S. Wang, T. Wang, W. Chen, Novel highly active visible-light-induced photocatalysts based on BiOBr with Ti doping and Ag decorating, ACS Appl. Mater. Interfaces,4 (2012) 4440–4444.
  39. Q. Wang, L. Zheng, Y. Bai, J. Zhao, F. Wang, R. Zhang, H. Huang, B. Su, Zn3(OH)2V2O7·2H2O/g-C3N4: a novel composite for efficient photodegradation of methylene blue under visiblelight irradiation, Appl. Surf. Sci., 347 (2015) 602–609.
  40. K.S. Sing, D.H. Everett, R.A. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  41. L. Li, Y. Yang, X. Liu, R. Fan, Y. Shi, S. Li, L. Zhang, F. Xiao, P. Tang, R. Xu, W. Zhang, Y. Wang, L. Ma, A direct synthesis of B-doped TiO2 and its photocatalytic performance on degradation of RhB, Appl. Surf. Sci., 265 (2013) 36–40.
  42. C. Mondal, M. Gunguly, A.K. SinhaSong, J. Pal, R. Sahoo, T. Pal, Robust cubooctahedron Zn3V2O8 in gram quantity: a material for photocatalytic dye degradation in water, CrystEngComm, 15 (2013) 6745–6751.
  43. H. Daupor, S. Wongnawa, Urchinlike Ag/AgCl photocatalyst: synthesis, characterization, and activity, Appl. Catal., A, 473 (2014) 59–69.
  44. J. Yu, G. Dai, B. Huang, Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays, J. Phys. Chem. C, 113 (2009) 16394–16401.
  45. Y. Tian, T. Tatsuma, Mechanisms and applications of plasmoninduced charge separation at TiO2 films loaded with gold nanoparticles, J. Am. Chem. Soc., 127 (2005) 7632–7637.
  46. H.Y. Aziz, S.Y. Maryam, Fe3O4/ZnO/Ag3VO4/AgI nanocomposites: quaternary magnetic photocatalysts with excellent activity in degradation of water pollutants under visible light, Sep. Purif. Methods, 166 (2016) 63–72.
  47. D.L. Chen, S.H. Yoo, Q. Huang, G. Ali, S.O. Cho, Sonochemical synthesis of Ag/AgCl nanocubes and their efficient visiblelight- driven photocatalytic performance, Chem. Eur. J., 18 (2012) 5192–5200.
  48. D.F. Wang, Z.G. Zhou, J.H. Ye, Photocatalytic O2 evolution with the visible-light-driven photocatalysts M3V2O8 (M = Mg, Zn), Res. Chem. Intermed., 31(2005) 433–439.
  49. Y.Q. Yang, G.K. Zhang, W. Xu, Facile synthesis and photocatalytic properties of Ag-AgCl-TiO2/rectorite composite, J. Colloid Interface Sci., 376 (2012) 217–223.
  50. M. Mitra, H.Y. Aziz, A. Masoud, Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation, J. Colloid Interface Sci., 480 (2016) 218–231.
  51. M. Mitra, H.Y. Aziz, Magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites: novel visible-light-driven photocatalysts based on graphitic carbon nitride, J. Colloid Interface Sci., 465 (2016) 83–92.
  52. S.G. Maryam, H.Y. Aziz, Novel magnetically separable ZnO/AgBr/Fe3O4/Ag3VO4 nanocomposites with tandem n-n heterojunctions as highly efficient visible-light-driven photocatalysts, RSC Adv., 6 (2016) 2402–2413.