References
- B. Hameed, I. Tan, A. Ahmad, Adsorption isotherm, kinetic
modeling and mechanism of 2,4,6-trichlorophenol on coconut
husk-based activated carbon, Chem. Eng. J., 144 (2008)
235–244.
- B.H. Hameed, I.A.W. Tan, A.L. Ahmad, Preparation of oil
palm empty fruit bunch-based activated carbon for removal
of 2,4,6-trichlorophenol: optimization using response surface
methodology, J. Hazard. Mater., 164 (2009) 1316–1324.
- P.S. Majumder, S.K. Gupta, Removal of chlorophenols in
sequential anaerobic–aerobic reactors, Bioresour. Technol., 98
(2007) 118–129.
- D. Krishnaiah, S.M. Anisuzzaman, A. Bono, R. Sarbatly,
Adsorption of 2,4,6-trichlorophenol (TCP) onto activated
carbon, J. King Saud Univ. Sci., 25 (2013) 251–255.
- T.S. Anirudhan, M. Ramachandran, Removal of
2,4,6-trichlorophenol from water and petroleum refinery
industry effluents by surfactant-modified bentonite, J. Water
Process Eng., 1 (2014) 46–53.
- Á. Kovács, A. Kende, M. Mörtl, G. Volk, T. Rikker, K. Torkos,
Determination of phenols and chlorophenols as trimethylsilyl
derivatives using gas chromatography-mass spectrometry, J.
Chromatogr., A, 1194 (2008) 139–142.
- J.M. Li, X.G. Meng, C.W. Hu, J. Du, Adsorption of phenol,
p-chlorophenol and p-nitrophenol onto functional chitosan,
Bioresour. Technol., 100 (2009) 1168–1173.
- A.O. Olaniran, E.O. Igbinosa, Chlorophenols and other related
derivatives of environmental concern: properties, distribution
and microbial degradation processes, Chemosphere, 83 (2011)
1297–1306.
- C.G. Joseph, G.L. Puma, A. Bono, Y.H. Taufiq-Yap, D. Krishnaiah,
Operating parameters and synergistic effects of combining
ultrasound and ultraviolet irradiation in the degradation of
2,4,6-trichlorophenol, Desalination, 276 (2011) 303–309.
- S. Mubarik, A. Saeed, M.M. Athar, M. Iqbal, Characterization and
mechanism of the adsorptive removal of 2,4,6-trichlorophenol
by biochar prepared from sugarcane bagasse, J. Ind. Eng.
Chem., 33 (2016) 115–121.
- B. Hameed, Equilibrium and kinetics studies of
2,4,6-trichlorophenol adsorption onto activated clay, Colloids
Surf., A, 307 (2007) 45–52.
- E. Saputra, M.A. Budihardjo, S. Bahri, J.A. Pinem, Cobaltexchanged
natural zeolite catalysts for catalytic oxidation of
phenolic contaminants in aqueous solutions, J. Water Process
Eng., 12 (2016) 47–51.
- M.Y. Pamukoglu, F. Kargi, Biodegradation kinetics of
2,4,6-trichlorophenol by Rhodococcus rhodochrous in batch
culture, Enzyme Microb. Technol., 43 (2008) 43–47.
- M. Baeza-Alvarado, M. Olguín, Surfactant-modified
clinoptilolite-rich tuff to remove barium (Ba2+) and fulvic acid
from mono-and bi-component aqueous media, Microporous
Mesoporous Mater., 139 (2011) 81–86.
- N. Chaouati, A. Soualah, M. Chater, Adsorption of phenol from
aqueous solution onto zeolites Y modified by silylation, C.R.
Chim., 16 (2013) 222–228.
- H.M. Baker, R. Ghanem, Evaluation of treated natural zeolite
for the removal of o-chlorophenol from aqueous solution,
Desalination, 249 (2009) 1265–1272.
- S.H. Lin, R.S. Juang, Adsorption of phenol and its derivatives
from water using synthetic resins and low-cost natural
adsorbents: a review, J. Environ. Manage., 90 (2009) 1336–1349.
- J. Lin, Y. Zhan, Z. Zhu, Adsorption characteristics of copper
(II) ions from aqueous solution onto humic acid-immobilized
surfactant-modified zeolite, Colloids Surf., A, 384 (2011) 9–16.
- M. Ahmaruzzaman, Adsorption of phenolic compounds on
low-cost adsorbents: a review, Adv. Colloid Interface Sci., 143
(2008) 48–67.
- C. Lei, Y.-y. Hu, M.-z. He, Adsorption characteristics of triclosan
from aqueous solution onto cetylpyridinium bromide (CPB)
modified zeolites, Chem. Eng. J., 219 (2013) 361–370.
- H. Zaghouane-Boudiaf, M. Boutahala, S. Sahnoun, C. Tiar, F.
Gomri, Adsorption characteristics, isotherm, kinetics, and
diffusion of modified natural bentonite for removing the
2,4,5-trichlorophenol, Appl. Clay Sci., 90 (2014) 81–87.
- Y. Dong, D. Wu, X. Chen, Y. Lin, Adsorption of bisphenol A
from water by surfactant-modified zeolite, J. Colloid Interface
Sci., 348 (2010) 585–590.
- A. Kuleyin, Removal of phenol and 4-chlorophenol by
surfactant-modified natural zeolite, J. Hazard. Mater., 144
(2007) 307–315.
- R. Elena Apreutesei, C. Teodosiu, C. Catrinescu, Studies
regarding phenol and 4-chlorophenol sorption by surfactant
modified zeolites, Environ. Eng. Manage. J., 8 (2009) 651–656.
- Q. Tao, M. Hu, X. Ma, M. Xiang, T.C. Zhang, C. Li, J. Yao, Y.
Liang, Simultaneous removal of ammonium and nitrate by
HDTMA-modified zeolite, Water Sci. Technol., 72 (2015)
1931–1939.
- A. Torabian, H. Kazemian, L. Seifi, G. Nabi Bidhendi,
A.A. Azimi, S.K. Ghadiri, Removal of petroleum aromatic
hydrocarbons by surfactant-modified natural zeolite: the effect
of surfactant, Clean,38 (2010) 77–83.
- Z. Aksu, F. Gönen, Biosorption of phenol by immobilized
activated sludge in a continuous packed bed: prediction of
breakthrough curves, Process Biochem., 39 (2004) 599–613.
- C. Díaz-Nava, M.T. Olguín, M. Solache-Ríos, M.T. Alarcón-
Herrera, A. Aguilar-Elguezabal, Phenol sorption on surfactantmodified
Mexican zeolitic-rich tuff in batch and continuous
systems, J. Hazard. Mater., 167 (2009) 1063–1069.
- T.M. Aversa, C.M.F. da Silva, P.C.S. da Rocha, E.F. Lucas,
Influence of exchange group of modified glycidyl methacrylate
polymer on phenol removal: a study by batch and continuous
flow processes, J. Environ. Manage., 182 (2016) 301–307.
- APHA, AWWA, Standard Methods for the Examination of
Water and Wastewater, American Public Health Association,
Washington, D.C., USA, 2005.
- M. Macedo-Miranda, M. Olguín, Arsenic sorption by modified
clinoptilolite–heulandite rich tuffs, J. Inclusion Phenom.
Macrocyclic Chem., 59 (2007) 131–142.
- G. Asgari, A. Sidmohammadi, A. Ebrahimi, Z. Gholami, E.
Hoseinzadeh, Study on phenol removing by using modified
zeolite (clinoptilolite) with FeCl3 from aqueous solutions, J.
Health Syst. Res., 6 (2010) 848–852.
- I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption isotherms,
kinetics, thermodynamics and desorption studies of
2,4,6-trichlorophenol on oil palm empty fruit bunch-based
activated carbon, J. Hazard. Mater., 164 (2009) 473–482.
- L. Ren, J. Zhang, Y. Li, C. Zhang, Preparation and evaluation
of cattail fiber-based activated carbon for 2,4-dichlorophenol
and 2,4,6-trichlorophenol removal, Chem. Eng. J., 168 (2011)
553–561.
- K. Naddafi, N. Rastkari, R. Nabizadeh, R. Saeedi, M. Gholami,
M. Sarkhosh, Adsorption of 2,4,6-trichlorophenol from aqueous
solutions by a surfactant-modified zeolitic tuff: batch and
continuous studies, Desal. Water Treat., 57 (2016) 5789–5799.
- S. Chen, Q. Yue, B. Gao, Q. Li, X. Xu, K. Fu, Adsorption of
hexavalent chromium from aqueous solution by modified corn
stalk: a fixed-bed column study, Bioresour. Technol., 113 (2012)
114–120.
- S. Baral, N. Das, T. Ramulu, S. Sahoo, S. Das, G.R. Chaudhury,
Removal of Cr(VI) by thermally activated weed Salvinia cucullata
in a fixed-bed column, J. Hazard. Mater., 161 (2009) 1427–1435.