References

  1. B. Hameed, I. Tan, A. Ahmad, Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon, Chem. Eng. J., 144 (2008) 235–244.
  2. B.H. Hameed, I.A.W. Tan, A.L. Ahmad, Preparation of oil palm empty fruit bunch-based activated carbon for removal of 2,4,6-trichlorophenol: optimization using response surface methodology, J. Hazard. Mater., 164 (2009) 1316–1324.
  3. P.S. Majumder, S.K. Gupta, Removal of chlorophenols in sequential anaerobic–aerobic reactors, Bioresour. Technol., 98 (2007) 118–129.
  4. D. Krishnaiah, S.M. Anisuzzaman, A. Bono, R. Sarbatly, Adsorption of 2,4,6-trichlorophenol (TCP) onto activated carbon, J. King Saud Univ. Sci., 25 (2013) 251–255.
  5. T.S. Anirudhan, M. Ramachandran, Removal of 2,4,6-trichlorophenol from water and petroleum refinery industry effluents by surfactant-modified bentonite, J. Water Process Eng., 1 (2014) 46–53.
  6. Á. Kovács, A. Kende, M. Mörtl, G. Volk, T. Rikker, K. Torkos, Determination of phenols and chlorophenols as trimethylsilyl derivatives using gas chromatography-mass spectrometry, J. Chromatogr., A, 1194 (2008) 139–142.
  7. J.M. Li, X.G. Meng, C.W. Hu, J. Du, Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan, Bioresour. Technol., 100 (2009) 1168–1173.
  8. A.O. Olaniran, E.O. Igbinosa, Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes, Chemosphere, 83 (2011) 1297–1306.
  9. C.G. Joseph, G.L. Puma, A. Bono, Y.H. Taufiq-Yap, D. Krishnaiah, Operating parameters and synergistic effects of combining ultrasound and ultraviolet irradiation in the degradation of 2,4,6-trichlorophenol, Desalination, 276 (2011) 303–309.
  10. S. Mubarik, A. Saeed, M.M. Athar, M. Iqbal, Characterization and mechanism of the adsorptive removal of 2,4,6-trichlorophenol by biochar prepared from sugarcane bagasse, J. Ind. Eng. Chem., 33 (2016) 115–121.
  11. B. Hameed, Equilibrium and kinetics studies of 2,4,6-trichlorophenol adsorption onto activated clay, Colloids Surf., A, 307 (2007) 45–52.
  12. E. Saputra, M.A. Budihardjo, S. Bahri, J.A. Pinem, Cobaltexchanged natural zeolite catalysts for catalytic oxidation of phenolic contaminants in aqueous solutions, J. Water Process Eng., 12 (2016) 47–51.
  13. M.Y. Pamukoglu, F. Kargi, Biodegradation kinetics of 2,4,6-trichlorophenol by Rhodococcus rhodochrous in batch culture, Enzyme Microb. Technol., 43 (2008) 43–47.
  14. M. Baeza-Alvarado, M. Olguín, Surfactant-modified clinoptilolite-rich tuff to remove barium (Ba2+) and fulvic acid from mono-and bi-component aqueous media, Microporous Mesoporous Mater., 139 (2011) 81–86.
  15. N. Chaouati, A. Soualah, M. Chater, Adsorption of phenol from aqueous solution onto zeolites Y modified by silylation, C.R. Chim., 16 (2013) 222–228.
  16. H.M. Baker, R. Ghanem, Evaluation of treated natural zeolite for the removal of o-chlorophenol from aqueous solution, Desalination, 249 (2009) 1265–1272.
  17. S.H. Lin, R.S. Juang, Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review, J. Environ. Manage., 90 (2009) 1336–1349.
  18. J. Lin, Y. Zhan, Z. Zhu, Adsorption characteristics of copper (II) ions from aqueous solution onto humic acid-immobilized surfactant-modified zeolite, Colloids Surf., A, 384 (2011) 9–16.
  19. M. Ahmaruzzaman, Adsorption of phenolic compounds on low-cost adsorbents: a review, Adv. Colloid Interface Sci., 143 (2008) 48–67.
  20. C. Lei, Y.-y. Hu, M.-z. He, Adsorption characteristics of triclosan from aqueous solution onto cetylpyridinium bromide (CPB) modified zeolites, Chem. Eng. J., 219 (2013) 361–370.
  21. H. Zaghouane-Boudiaf, M. Boutahala, S. Sahnoun, C. Tiar, F. Gomri, Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing the 2,4,5-trichlorophenol, Appl. Clay Sci., 90 (2014) 81–87.
  22. Y. Dong, D. Wu, X. Chen, Y. Lin, Adsorption of bisphenol A from water by surfactant-modified zeolite, J. Colloid Interface Sci., 348 (2010) 585–590.
  23. A. Kuleyin, Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite, J. Hazard. Mater., 144 (2007) 307–315.
  24. R. Elena Apreutesei, C. Teodosiu, C. Catrinescu, Studies regarding phenol and 4-chlorophenol sorption by surfactant modified zeolites, Environ. Eng. Manage. J., 8 (2009) 651–656.
  25. Q. Tao, M. Hu, X. Ma, M. Xiang, T.C. Zhang, C. Li, J. Yao, Y. Liang, Simultaneous removal of ammonium and nitrate by HDTMA-modified zeolite, Water Sci. Technol., 72 (2015) 1931–1939.
  26. A. Torabian, H. Kazemian, L. Seifi, G. Nabi Bidhendi, A.A. Azimi, S.K. Ghadiri, Removal of petroleum aromatic hydrocarbons by surfactant-modified natural zeolite: the effect of surfactant, Clean,38 (2010) 77–83.
  27. Z. Aksu, F. Gönen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process Biochem., 39 (2004) 599–613.
  28. C. Díaz-Nava, M.T. Olguín, M. Solache-Ríos, M.T. Alarcón- Herrera, A. Aguilar-Elguezabal, Phenol sorption on surfactantmodified Mexican zeolitic-rich tuff in batch and continuous systems, J. Hazard. Mater., 167 (2009) 1063–1069.
  29. T.M. Aversa, C.M.F. da Silva, P.C.S. da Rocha, E.F. Lucas, Influence of exchange group of modified glycidyl methacrylate polymer on phenol removal: a study by batch and continuous flow processes, J. Environ. Manage., 182 (2016) 301–307.
  30. APHA, AWWA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C., USA, 2005.
  31. M. Macedo-Miranda, M. Olguín, Arsenic sorption by modified clinoptilolite–heulandite rich tuffs, J. Inclusion Phenom. Macrocyclic Chem., 59 (2007) 131–142.
  32. G. Asgari, A. Sidmohammadi, A. Ebrahimi, Z. Gholami, E. Hoseinzadeh, Study on phenol removing by using modified zeolite (clinoptilolite) with FeCl3 from aqueous solutions, J. Health Syst. Res., 6 (2010) 848–852.
  33. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon, J. Hazard. Mater., 164 (2009) 473–482.
  34. L. Ren, J. Zhang, Y. Li, C. Zhang, Preparation and evaluation of cattail fiber-based activated carbon for 2,4-dichlorophenol and 2,4,6-trichlorophenol removal, Chem. Eng. J., 168 (2011) 553–561.
  35. K. Naddafi, N. Rastkari, R. Nabizadeh, R. Saeedi, M. Gholami, M. Sarkhosh, Adsorption of 2,4,6-trichlorophenol from aqueous solutions by a surfactant-modified zeolitic tuff: batch and continuous studies, Desal. Water Treat., 57 (2016) 5789–5799.
  36. S. Chen, Q. Yue, B. Gao, Q. Li, X. Xu, K. Fu, Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: a fixed-bed column study, Bioresour. Technol., 113 (2012) 114–120.
  37. S. Baral, N. Das, T. Ramulu, S. Sahoo, S. Das, G.R. Chaudhury, Removal of Cr(VI) by thermally activated weed Salvinia cucullata in a fixed-bed column, J. Hazard. Mater., 161 (2009) 1427–1435.