References

  1. E. Clonfero, P. Venier, M. Granella, A.G. Levis, Leather azo dyes: mutagenic and carcinogenic risks, Med. Lav., 81 (1990) 222–229.
  2. L.C. Abbott, P. Macfaul, L. Jansen, J. Oakes, J.R.L. Smith, J.N. Moore, Spectroscopic and photochemical studies of xanthene and azo dyes on surfaces: cellophane as a mimic of paper and cotton, Dyes Pigm., 48 (2001) 49–56.
  3. R. Ansari, Z. Mosayebzadeh, Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters, Chem. Pap., 65 (2010) 1–8.
  4. L. Li, Z. Shi, H. Zhu, W. Hong, F. Xie, K. Sun, Adsorption of azo dyes from aqueous solution by the hybrid MOFs/GO, Water Sci. Technol. 73 (2016) 1728–1737.
  5. G. Jingqun, J. Renzheng, W. Jun, K. Pingli, W. Baoxin, L. Ying, L. Kai, Z. Xiangdong, The investigation of sonocatalytic activity of Er3+:YAlO3/TiO2-ZnO composite in azo dyes degradation, Ultrason. Sonochem., 18 (2011) 541–548.
  6. N. Sahu, K.M. Parida, Photocatalytic activity of Au/TiO2 nanocomposite for azo-dyes degradation, Kinet. Catal., 53 (2012) 197–205.
  7. D. Vaněrková, A. Sakalis, M. Holčapek, P. Jandera, A. Voulgaropoulos, Analysis of electrochemical degradation products of sulphonated azo dyes using high-performance liquid chromatography/tandem mass spectrometry, Rapid Commun. Mass Spectrom., 20 (2006) 2807–2815.
  8. J.W. Zhou, H. Ritter, Cyclodextrin functionalized polymers as drug delivery systems, J. Polym. Sci., Part A: Polym. Chem., 1 (2010) 1552–1559.
  9. F. van de Manakker, T. Vermonden, C.F. van Nostrum, W.E. Hennink, Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications, Biomacromolecules, 10 (2009) 3157–3175.
  10. K. Freudenberg, E. Schaaf, G. Dumpert, T. Ploetz, Neue Ansichten über die Stärke, Sci. Nature, 27 (1939) 850–853.
  11. G. Chen, M. Jiang, Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular selfassembly, Chem. Soc. Rev., 40 (2011) 2254–2266.
  12. A. Miyawaki, M. Miyauchi, Y. Takashima, H. Yamaguchi, A. Harada, Formation of supramolecular isomers; poly[2]rotaxane and supramolecular assembly, Chem. Commun., 4 (2008) 456–458.
  13. K. Miyamae, M. Nakahata, Y. Takashima, A. Harada, Selfhealing, expansion–contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host–guest interactions, Angew. Chem. Int. Ed., 127 (2015) 8984–8987.
  14. M. Miyauchi, A. Harada, Construction of supramolecular polymers with alternating α-, β-cyclodextrin units using conformational change induced by competitive guests, J. Am. Chem. Soc., 126 (2004) 11418–11419.
  15. A. Harada, A. Hashidzume, Y. Takashima, Cyclodextrin-based supramolecular polymers, Chem. Soc. Rev., 38 (2009) 1–43.
  16. E.Y. Ozmen, M. Sezgin, A. Yilmaz, M. Yilmaz, Synthesis of beta-cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions, Bioresour. Technol., 99 (2008) 526–531.
  17. E. Yilmaz, S. Memon, M. Yilmaz, Removal of direct azo dyes and aromatic amines from aqueous solutions using two betacyclodextrin- based polymers, J. Hazard. Mater., 174 (2010) 592–597.
  18. M. Arslan, S. Sayin, M. Yilmaz, Removal of carcinogenic azo dyes from water by new cyclodextrin-immobilized iron oxide magnetic nanoparticles, Water Air Soil Pollut., 224 (2013) 1527.
  19. A. Alsbaiee, B.J. Smith, L. Xiao, Y. Ling, D.E. Helbling, W.R. Dichtel, Rapid removal of organic micropollutants from water by a porous beta-cyclodextrin polymer, Nature, 529 (2016) 190–194.
  20. P. Yuan, L. Chengde, Z. Zhongxing, L. Kerh Li, C. Jianhai, L. Jun, Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery, Biomaterials, 32 (2011) 8328–8341.
  21. E. Renard, G. Volet, C. Amiel, Synthesis of a novel linear water-soluble β-cyclodextrin polymer, Polym. Int., 54 (2005) 594–599.
  22. E. Renard, B. Sebille, G. Barnathan, A. Deratani, Polycondensation of cyclodextrins with epichlorohydrin. Influence of reaction conditions on the polymer structure, Macromol. Symp., 122 (1997) 229–234.
  23. N. Morin-Crini, G. Crini, Environmental applications of waterinsoluble β-cyclodextrin–epichlorohydrin polymers, Prog. Polym. Sci., 38 (2013) 344–368.
  24. A.I. Panou, K.G. Papadokostaki, P.A. Tarantili, M. Sanopoulou, Effect of hydrophilic inclusions on PDMS crosslinking reaction and its interrelation with mechanical and water sorption properties of cured films, Eur. Polym. J., 49 (2013) 1803–1810.
  25. S. Lagergren, Zur Theorie der sogenannten Absorption gelöster Stoffe, PA Norstedt & Söner, 1898.
  26. Y.S. Ho, G. Mckay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  27. S.Y. Elovich, G. Zhabrova, Mechanism of the catalytic hydrogenation of ethylene on nickel: I. Kinetics of the process, J. Phys. Chem., 13 (1939) 1761–1775.
  28. N.F. Cardoso, E.C. Lima, I.S. Pinto, C.V. Amavisca, R. Betina, R.B. Pinto, W.S. Alencar, S.F.P. Pereira, Application of cupuassu shell as biosorbent for the removal of textile dyes from aqueous solution, J. Environ. Manage., 92 (2011) 1237–1247.
  29. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
  30. H. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) e470.
  31. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part II—liquids, J. Am. Chem. Soc., 38 (1915) 102–105.
  32. R. Sips, On the structure of a catalyst surface, J. Chem. Phys., 16 (1948) 1024–1026.
  33. D.Y. Pratt, L.D. Wilson, J.A. Kozinski, A.M. Mohart, Preparation and sorption studies of beta-cyclodextrin/epichlorohydrin copolymers, J. Appl. Polym. Sci., 116 (2010) 2982–2989.