References
- X. Lv, Y. Hu, J. Tang, T. Sheng, G. Jiang, X. Xu, Effects of
co-existing ions and natural organic matter on removal of
chromium (VI) from aqueous solution by nanoscale zero valent
iron (nZVI)-Fe3O4 nanocomposites, Chem. Eng. J., 218 (2013)
55–64.
- K.D. Grieger, A. Fjordbøge, N.B. Hartmann, E. Eriksson, P.L.
Bjerg, A. Baun, Environmental benefits and risks of zero-valent
iron nanoparticles (nZVI) for in situ remediation: risk mitigation
or trade-off?, J. Contam. Hydrol., 118 (2010) 165–183.
- D. O’Carroll, B. Sleep, M. Krol, H. Boparai, C. Kocur, Nanoscale
zero valent iron and bimetallic particles for contaminated site
remediation, Adv. Water Resour., 51 (2013) 104–122.
- Y.H. Hwang, D.G. Kim, H.S. Shin, Mechanism study of nitrate
reduction by nano zero valent iron, J. Hazard. Mater., 185 (2011)
1513–1521.
- B. Karn, T. Kuiken, M. Otto, Nanotechnology and in situ
remediation: a review of the benefits and potential risks,
Environ. Health Perspect., 117 (2009) 1823–1831.
- W. Yan, H.L. Lien, B.E. Koel, W.X. Zhang, Iron nanoparticles
for environmental clean-up: recent developments and future
outlook, Environ. Sci. Process. Impacts, 15 (2013) 63–77.
- F. He, D. Zhao, Preparation and characterization of a new class
of starch-stabilized bimetallic nanoparticles for degradation of
chlorinated hydrocarbons in water, Environ. Sci. Technol., 39
(2005) 3314–3320.
- C.M. Cirtiu, T. Raychoudhury, S. Ghoshal, A. Moores, Systematic
comparison of the size, surface characteristics and colloidal
stability of zero valent iron nanoparticles pre- and post-grafted
with common polymers, Colloids Surf. A, 390 (2011) 95–104.
- B. Schrick, J.L. Blough, A.D. Jones, T.E. Mallouk,
Hydrodechlorination of trichloroethylene to hydrocarbons
using bimetallic nickel-iron nanoparticles, Chem. Mater., 14
(2002) 5140–5147.
- D.W. Elliott, W.X. Zhang, Field assessment of nanoscale
bimetallic particles for groundwater treatment, Environ. Sci.
Technol., 35 (2001) 4922–4926.
- Y.P. Sun, X.Q. Li, W.X. Zhang, H.P. Wang, A method for
the preparation of stable dispersion of zero-valent iron
nanoparticles, Colloids Surf. A, 308 (2007) 60–66.
- Y. Xu, D. Zhao, Reductive immobilization of chromate in water
and soil using stabilized iron nanoparticles, Water Res., 41
(2007) 2101–2108.
- L.N. Shi, X. Zhang, Z.L. Chen, Removal of chromium (VI) from
wastewater using bentonite-supported nanoscale zero-valent
iron, Water Res., 45 (2011) 886–892.
- X. Lv, J. Xu, G. Jiang, X. Xu, Removal of chromium (VI) from
wastewater by nanoscale zero-valent iron particles supported
on multiwalled carbon nanotubes, Chemosphere, 85 (2011)
1204–1209.
- F. He, D. Zhao, Manipulating the size and dispersibility of
zerovalent iron nanoparticles by use of carboxymethyl cellulose
stabilizers, Environ. Sci. Technol., 41 (2007) 6216–6221.
- C. Lee, J.Y. Kim, W.I. Lee, K.L. Nelson, J. Yoon, D.L. Sedlak,
Bactericidal effect of zero-valent iron nanoparticles on
Escherichia coli, Environ. Sci. Technol., 42 (2008) 4927–4933.
- M. Diao, M. Yao, Use of zero-valent iron nanoparticles in
inactivating microbes, Water Res., 43 (2009) 5243–5251.
- L. Zhou, T.L. Thanh, J. Gong, J.H. Kim, E.J. Kim, Y.S. Chang,
Carboxymethyl cellulose coating decreases toxicity and
oxidizing capacity of nanoscale zerovalent iron, Chemosphere,
104 (2014) 155–161.
- C.R. Keenan, D.L. Sedlak, Factors affecting the yield of oxidants
from the reaction of nanoparticulate zero-valent iron and
oxygen, Environ. Sci. Technol., 42 (2008) 1262–1267.
- S.H. Kang, W. Choi, Oxidative degradation of organic
compounds using zero-valent iron in the presence of natural
organic matter serving as an electron shuttle, Environ. Sci.
Technol., 43 (2008) 878–883.
- C.B. Wang, W.X. Zhang, Synthesizing nanoscale iron particles
for rapid and complete dechlorination of TCE and PCBs,
Environ. Sci. Technol., 31 (1997) 2154–2156.
- G.N. Glavee, K.J. Klabunde, C.M. Sorensen, G.C. Hadjipanayis,
Chemistry of borohydride reduction of iron (II) and iron (III)
ions in aqueous and nonaqueous media. Formation of nanoscale
Fe, FeB, and Fe2B powders, Inorga. Chem., 34 (1995) 28–35.
- Y. Liu, S.A. Majetich, R.D. Tilton, D.S. Sholl, G.V. Lowry, TCE
dechlorination rates, pathways, and efficiency of nanoscale iron
particles with different properties, Environ. Sci. Technol., 39
(2005) 1338–1345.
- D.W. Elliott, H.L. Lien, W.X. Zhang, Degradation of lindane
by zero-valent iron nanoparticles, J. Environ. Eng., 135 (2009)
317–324.
- T. Satapanajaru, P. Anurakpongsatorn, P. Pengthamkeerati, H.
Boparai, Remediation of atrazine-contaminated soil and water
by nano zerovalent iron, Water Air Soil Pollut., 192 (2008)
349–359.
- G. Naja, A. Halasz, S. Thiboutot, G. Ampleman, J. Hawari,
Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)
using zerovalent iron nanoparticles, Environ. Sci. Technol., 42
(2008) 4364–4370.
- S. Choe, S.H. Lee, Y.Y. Chang, K.Y. Hwang, J. Khim, Rapid
reductive destruction of hazardous organic compounds by
nanoscale Fe0, Chemosphere, 42 (2001) 367–372.
- D.V. Lopes, J. Lobo, S. Santos, R.C. Martins, M.J. Quina, L.M.
Gando-Ferreira, C. Dias-Ferreira, R.M. Quinta-Ferreira,
Treatment of Olive Mill Solid Wastes by Chemical Processes
Enhanced with Iron Rich Materials, Proc. Third International
Conference on Sustainable Solid Waste Management, 2015.
- M. Stoller, G. Azizova, A. Mammadova, G. Vilardi, L.
Di Palma, A. Chianese, Treatment of olive oil processing
wastewater by ultrafiltration, nanofiltration, reverse osmosis
and biofiltration, Chem. Eng. Trans., 47 (2016) 409–414. doi:
10.3303/CET1647069.
- G.G. Muradova, S.R. Gadjieva, L. Di Palma, G. Vilardi, Nitrates
removal by bimetallic nanoparticles in water, Chem. Eng.
Trans., 47 (2016) 205–210. doi: 10.3303/CET1647035.
- G. Vilardi, L. Di Palma, Kinetic study of nitrate removal from
aqueous solutions using copper-coated iron nanoparticles, Bull.
Environ. Contam. Toxicol., 98 (2017) 359–365.
- S.R. Kanel, B. Manning, L. Charlet, H. Choi, Removal of
arsenic(III) from groundwater by nanoscale zero-valent iron,
Environ. Sci. Technol., 39 (2005) 1291–1298.
- W. Wang, Y. Hua, S. Li, W. Yan, W.X. Zhang, Removal of Pb(II)
and Zn(II) using lime and nanoscale zero-valent iron (nZVI): a
comparative study, Chem. Eng. J., 304 (2016) 79–88.
- C. Jing, Y.L. Li, S. Landsberger, Review of soluble uranium removal
by nanoscale zero valent iron, J. Environ. Radioact., 164 (2016) 65–72.
- E. Marsili, H. Beyenal, L. Di Palma, C. Merli, A. Dohnalkova,
J.E. Amonette, Z. Lewandowski, Uranium removal by sulfatereducing
biofilms in the presence of carbonate, Water Sci.
Technol., 52 (2005) 49–55.
- E. Marsili, H. Beyenal, L. Di Palma, C. Merli, A. Dohnalkova,
J.E. Amonette, Z. Lewandowski, Uranium immobilization by
sulfate-reducing biofilms grown on hematite, dolomite and
calcite, Environ. Sci. Technol., 41 (2007) 8349–8354.
- M.T. Gueye, L. Di Palma, G. Allahverdeyeva, I. Bavasso, E.
Petrucci, M. Stoller, G. Vilardi, The influence of heavy metals
and organic matter on hexavalent chromium reduction by nano
zero valent iron in soil, Chem. Eng. Trans., 47 (2016) 289–294.
- C. Mystrioti, D. Sparis, N. Papasiopi, A. Xenidis, D. Dermatas,
M. Chrysochoou, Assessment of polyphenol coated nano zero
valent iron for hexavalent chromium removal from contaminated
waters, Bull. Environ. Contam. Toxicol., 94 (2015) 302–307.
- S.C. Tsai, Heavy Metal Removal From Water by Zero-Valent
Iron, Department and Graduate Institute of Environmental
Engineering and Management, Master’s Thesis, 2012.
- L. Di Palma, D. Mancini, E. Petrucci, Experimental assessment
of chromium mobilization from polluted soil by washing,
Chem. Eng. Trans., 28 (2012) 145–150.
- D. Dermatas, T. Mpouras, M. Chrysochoou, I. Panagiotakis, C.
Vatseris, N. Linardos, E. Theologou, N. Boboti, A. Xenidis, N.
Papassiopi, L. Sakellariou, Origin and concentration profile of
chromium in a Greek aquifer, J. Hazard. Mater., 281 (2015) 35–46.
- L. Di Palma, M.T. Gueye, E. Petrucci, Hexavalent chromium
reduction in contaminated soil: a comparison between ferrous
sulphate and nanoscale zero-valent iron, J. Hazard. Mater., 281
(2015) 70–76.
- X.Q. Li, J. Cao, W.X. Zhang, Stoichiometry of Cr (VI)
immobilization using nanoscale zerovalent iron (nZVI): a
study with high-resolution X-ray photoelectron spectroscopy
(HR-XPS), Ind. Eng. Chem. Res., 47 (2008) 2131–2139.
- F. He, D. Zhao, J. Liu, C.B. Roberts, Stabilization of Fe-Pd
nanoparticles with sodium carboxymethyl cellulose for
enhanced transport and dechlorination of trichloroethylene
in soil and groundwater, Ind. Eng. Chem. Res., 46 (2007)
29–34.
- R.E. Davis, E. Bromels, C.L. Kibby, Boron hydrides. III.
Hydrolysis of sodium borohydride in aqueous solution, J. Am.
Chem. Soc., 84 (1962) 885–892.
- Y. Lan, B. Deng, C. Kim, E.C. Thornton, H. Xu, Catalysis of
elemental sulfur nanoparticles on chromium(VI) reduction by
sulfide under anaerobic conditions, Environ. Sci. Technol., 39
(2005) 2087–2094.
- N. Saleh, H.J. Kim, T. Phenrat, K. Matyjaszewski, R.D. Tilton,
G.V. Lowry, Ionic strength and composition affect the mobility
of surface-modified Fe0 nanoparticles in water-saturated sand
columns, Environ. Sci. Technol., 42 (2008) 3349–3355.
- P. Westerhoff, Reduction of nitrate, bromate, and chlorate by
zero valent iron (Fe0), J. Environ. Eng., 129 (2003) 10–16.
- V.N. Montesinos, N. Quici, E.B. Halac, A.G. Leyva, G. Custo,
S. Bengio, G. Zampieri, M.I. Litter, Highly efficient removal
of Cr(VI) from water with nanoparticulated zerovalent iron:
understanding the Fe(III)–Cr(III) passive outer layer structure,
Chem. Eng. J., 244 (2014) 569–575.