References

  1. X. Lv, Y. Hu, J. Tang, T. Sheng, G. Jiang, X. Xu, Effects of co-existing ions and natural organic matter on removal of chromium (VI) from aqueous solution by nanoscale zero valent iron (nZVI)-Fe3O4 nanocomposites, Chem. Eng. J., 218 (2013) 55–64.
  2. K.D. Grieger, A. Fjordbøge, N.B. Hartmann, E. Eriksson, P.L. Bjerg, A. Baun, Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off?, J. Contam. Hydrol., 118 (2010) 165–183.
  3. D. O’Carroll, B. Sleep, M. Krol, H. Boparai, C. Kocur, Nanoscale zero valent iron and bimetallic particles for contaminated site remediation, Adv. Water Resour., 51 (2013) 104–122.
  4. Y.H. Hwang, D.G. Kim, H.S. Shin, Mechanism study of nitrate reduction by nano zero valent iron, J. Hazard. Mater., 185 (2011) 1513–1521.
  5. B. Karn, T. Kuiken, M. Otto, Nanotechnology and in situ remediation: a review of the benefits and potential risks, Environ. Health Perspect., 117 (2009) 1823–1831.
  6. W. Yan, H.L. Lien, B.E. Koel, W.X. Zhang, Iron nanoparticles for environmental clean-up: recent developments and future outlook, Environ. Sci. Process. Impacts, 15 (2013) 63–77.
  7. F. He, D. Zhao, Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water, Environ. Sci. Technol., 39 (2005) 3314–3320.
  8. C.M. Cirtiu, T. Raychoudhury, S. Ghoshal, A. Moores, Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre- and post-grafted with common polymers, Colloids Surf. A, 390 (2011) 95–104.
  9. B. Schrick, J.L. Blough, A.D. Jones, T.E. Mallouk, Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles, Chem. Mater., 14 (2002) 5140–5147.
  10. D.W. Elliott, W.X. Zhang, Field assessment of nanoscale bimetallic particles for groundwater treatment, Environ. Sci. Technol., 35 (2001) 4922–4926.
  11. Y.P. Sun, X.Q. Li, W.X. Zhang, H.P. Wang, A method for the preparation of stable dispersion of zero-valent iron nanoparticles, Colloids Surf. A, 308 (2007) 60–66.
  12. Y. Xu, D. Zhao, Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles, Water Res., 41 (2007) 2101–2108.
  13. L.N. Shi, X. Zhang, Z.L. Chen, Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron, Water Res., 45 (2011) 886–892.
  14. X. Lv, J. Xu, G. Jiang, X. Xu, Removal of chromium (VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes, Chemosphere, 85 (2011) 1204–1209.
  15. F. He, D. Zhao, Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers, Environ. Sci. Technol., 41 (2007) 6216–6221.
  16. C. Lee, J.Y. Kim, W.I. Lee, K.L. Nelson, J. Yoon, D.L. Sedlak, Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli, Environ. Sci. Technol., 42 (2008) 4927–4933.
  17. M. Diao, M. Yao, Use of zero-valent iron nanoparticles in inactivating microbes, Water Res., 43 (2009) 5243–5251.
  18. L. Zhou, T.L. Thanh, J. Gong, J.H. Kim, E.J. Kim, Y.S. Chang, Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron, Chemosphere, 104 (2014) 155–161.
  19. C.R. Keenan, D.L. Sedlak, Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen, Environ. Sci. Technol., 42 (2008) 1262–1267.
  20. S.H. Kang, W. Choi, Oxidative degradation of organic compounds using zero-valent iron in the presence of natural organic matter serving as an electron shuttle, Environ. Sci. Technol., 43 (2008) 878–883.
  21. C.B. Wang, W.X. Zhang, Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environ. Sci. Technol., 31 (1997) 2154–2156.
  22. G.N. Glavee, K.J. Klabunde, C.M. Sorensen, G.C. Hadjipanayis, Chemistry of borohydride reduction of iron (II) and iron (III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders, Inorga. Chem., 34 (1995) 28–35.
  23. Y. Liu, S.A. Majetich, R.D. Tilton, D.S. Sholl, G.V. Lowry, TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties, Environ. Sci. Technol., 39 (2005) 1338–1345.
  24. D.W. Elliott, H.L. Lien, W.X. Zhang, Degradation of lindane by zero-valent iron nanoparticles, J. Environ. Eng., 135 (2009) 317–324.
  25. T. Satapanajaru, P. Anurakpongsatorn, P. Pengthamkeerati, H. Boparai, Remediation of atrazine-contaminated soil and water by nano zerovalent iron, Water Air Soil Pollut., 192 (2008) 349–359.
  26. G. Naja, A. Halasz, S. Thiboutot, G. Ampleman, J. Hawari, Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using zerovalent iron nanoparticles, Environ. Sci. Technol., 42 (2008) 4364–4370.
  27. S. Choe, S.H. Lee, Y.Y. Chang, K.Y. Hwang, J. Khim, Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0, Chemosphere, 42 (2001) 367–372.
  28. D.V. Lopes, J. Lobo, S. Santos, R.C. Martins, M.J. Quina, L.M. Gando-Ferreira, C. Dias-Ferreira, R.M. Quinta-Ferreira, Treatment of Olive Mill Solid Wastes by Chemical Processes Enhanced with Iron Rich Materials, Proc. Third International Conference on Sustainable Solid Waste Management, 2015.
  29. M. Stoller, G. Azizova, A. Mammadova, G. Vilardi, L. Di Palma, A. Chianese, Treatment of olive oil processing wastewater by ultrafiltration, nanofiltration, reverse osmosis and biofiltration, Chem. Eng. Trans., 47 (2016) 409–414. doi: 10.3303/CET1647069.
  30. G.G. Muradova, S.R. Gadjieva, L. Di Palma, G. Vilardi, Nitrates removal by bimetallic nanoparticles in water, Chem. Eng. Trans., 47 (2016) 205–210. doi: 10.3303/CET1647035.
  31. G. Vilardi, L. Di Palma, Kinetic study of nitrate removal from aqueous solutions using copper-coated iron nanoparticles, Bull. Environ. Contam. Toxicol., 98 (2017) 359–365.
  32. S.R. Kanel, B. Manning, L. Charlet, H. Choi, Removal of arsenic(III) from groundwater by nanoscale zero-valent iron, Environ. Sci. Technol., 39 (2005) 1291–1298.
  33. W. Wang, Y. Hua, S. Li, W. Yan, W.X. Zhang, Removal of Pb(II) and Zn(II) using lime and nanoscale zero-valent iron (nZVI): a comparative study, Chem. Eng. J., 304 (2016) 79–88.
  34. C. Jing, Y.L. Li, S. Landsberger, Review of soluble uranium removal by nanoscale zero valent iron, J. Environ. Radioact., 164 (2016) 65–72.
  35. E. Marsili, H. Beyenal, L. Di Palma, C. Merli, A. Dohnalkova, J.E. Amonette, Z. Lewandowski, Uranium removal by sulfatereducing biofilms in the presence of carbonate, Water Sci. Technol., 52 (2005) 49–55.
  36. E. Marsili, H. Beyenal, L. Di Palma, C. Merli, A. Dohnalkova, J.E. Amonette, Z. Lewandowski, Uranium immobilization by sulfate-reducing biofilms grown on hematite, dolomite and calcite, Environ. Sci. Technol., 41 (2007) 8349–8354.
  37. M.T. Gueye, L. Di Palma, G. Allahverdeyeva, I. Bavasso, E. Petrucci, M. Stoller, G. Vilardi, The influence of heavy metals and organic matter on hexavalent chromium reduction by nano zero valent iron in soil, Chem. Eng. Trans., 47 (2016) 289–294.
  38. C. Mystrioti, D. Sparis, N. Papasiopi, A. Xenidis, D. Dermatas, M. Chrysochoou, Assessment of polyphenol coated nano zero valent iron for hexavalent chromium removal from contaminated waters, Bull. Environ. Contam. Toxicol., 94 (2015) 302–307.
  39. S.C. Tsai, Heavy Metal Removal From Water by Zero-Valent Iron, Department and Graduate Institute of Environmental Engineering and Management, Master’s Thesis, 2012.
  40. L. Di Palma, D. Mancini, E. Petrucci, Experimental assessment of chromium mobilization from polluted soil by washing, Chem. Eng. Trans., 28 (2012) 145–150.
  41. D. Dermatas, T. Mpouras, M. Chrysochoou, I. Panagiotakis, C. Vatseris, N. Linardos, E. Theologou, N. Boboti, A. Xenidis, N. Papassiopi, L. Sakellariou, Origin and concentration profile of chromium in a Greek aquifer, J. Hazard. Mater., 281 (2015) 35–46.
  42. L. Di Palma, M.T. Gueye, E. Petrucci, Hexavalent chromium reduction in contaminated soil: a comparison between ferrous sulphate and nanoscale zero-valent iron, J. Hazard. Mater., 281 (2015) 70–76.
  43. X.Q. Li, J. Cao, W.X. Zhang, Stoichiometry of Cr (VI) immobilization using nanoscale zerovalent iron (nZVI): a study with high-resolution X-ray photoelectron spectroscopy (HR-XPS), Ind. Eng. Chem. Res., 47 (2008) 2131–2139.
  44. F. He, D. Zhao, J. Liu, C.B. Roberts, Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater, Ind. Eng. Chem. Res., 46 (2007) 29–34.
  45. R.E. Davis, E. Bromels, C.L. Kibby, Boron hydrides. III. Hydrolysis of sodium borohydride in aqueous solution, J. Am. Chem. Soc., 84 (1962) 885–892.
  46. Y. Lan, B. Deng, C. Kim, E.C. Thornton, H. Xu, Catalysis of elemental sulfur nanoparticles on chromium(VI) reduction by sulfide under anaerobic conditions, Environ. Sci. Technol., 39 (2005) 2087–2094.
  47. N. Saleh, H.J. Kim, T. Phenrat, K. Matyjaszewski, R.D. Tilton, G.V. Lowry, Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns, Environ. Sci. Technol., 42 (2008) 3349–3355.
  48. P. Westerhoff, Reduction of nitrate, bromate, and chlorate by zero valent iron (Fe0), J. Environ. Eng., 129 (2003) 10–16.
  49. V.N. Montesinos, N. Quici, E.B. Halac, A.G. Leyva, G. Custo, S. Bengio, G. Zampieri, M.I. Litter, Highly efficient removal of Cr(VI) from water with nanoparticulated zerovalent iron: understanding the Fe(III)–Cr(III) passive outer layer structure, Chem. Eng. J., 244 (2014) 569–575.