References

  1. S. Özyalin, R. Ustaoğlu, Kemer Baraj Gölü (Aydın) net fitoplankton kompozisyonunun incelenmesi, J. Fish. Aquat. Sci., 25 (2008) 275–282 (in Turkish).
  2. ICOLD-International Commission on Large Dams, World Register of Dams. Paris: International Commission on Large Dams, Paris, 1988.
  3. D. Purcell, Control of algal growth in reservoirs with ultrasound, School of Applied Sciences, PhD Thesis, Cranfield University, 2009, p. 248.
  4. K. Nakano, T.L. Jong, M. Matsumura, In situ algal bloom control by the integration of ultrasonic radiation and jet circulation to flushing, Environ. Sci. Technol., 35 (2001) 4941–4946.
  5. T.J. Lee, K. Nakano, M. Matsumara, Ultrasonic irradiation for blue-green algae bloom control, Environ. Technol., 22 (2001) 383–390.
  6. T.J. Lee, K. Nakano, M. Matsumara, A novel strategy for cyanobacterial bloom control by ultrasonic irradiation, Water Sci. Technol., 46 (2002) 207–215.
  7. C.Y. Ahn, M.H. Park, S.H. Joung, H.S. Kim, K.Y. Jang, H.M. Oh, Growth inhibition of cyanobacteria by ultrasonic radiation: Laboratory and enclosure studies, Environ. Sci. Technol., 37 (2003) 3031–3037.
  8. H. Hao, M. Wu, Y. Chen, J. Tang, Q. Wu, Cyanobacterial bloom control by ultrasonic irradiation at 20 kHz and 1.7 MHz., J. Environ. Sci. Heal A., 39 (2004) 1435–1446.
  9. L. Velo-Suárez, J.C. Gutiérrez-Estrada, Artificial neural network approaches to one-step weekly prediction of Dinophysis acuminate blooms in Huelva (Western Andalucía, Spain), Harmful Algae, 6 (2007) 361–371.
  10. J. Jiang, P. Wang, Z. Tian, L. Guo, Y. Wang, A Comparative Study of Statistical Learning Methods to Predict Eutrophication Tendency in a Reservoir, Northeast China, IEEE, 2011.
  11. C. Karul, S. Soyupak, In: F. Recknegel, A Comparison Between Neural Network Based and Multiple Regression Models for Chlorophyll-a Estimation, Ecological Informatics, Springer-Verlag, 2003, pp. 249–263.
  12. F. Üneş, Precipitation and reservoir volume relationship prediction with artificial neural networks model, National Clean Energy Symposium, Isparta, Turkey, 2006, p. 622.
  13. B. Kunduz, F. Üneş, Reservoir level prediction for Yarseli Dam using artificial neural networks model. National Clean Energy Symposium, Isparta, Turkey, 2006, p. 614.
  14. F. Üneş, Prediction of density flow plunging depth in dam reservoir: an artificial neural network approach, Clean, 38 (2010) 296–308.
  15. S. Kommineni, K. Amante, B. Karnik, eds., Strategies for controlling and mitigating algal growth within water treatment plants, Denver, Colorado, U.S. Water Research Foundation. 2009.
  16. K.S. Suslick, Ultrasound: Its Chemical, Physical, and Biological Effects, New York, USA, VCH Publishers, 1988.
  17. K.S. Suslick, Sonochemistry, Science, 247 (1990) 1439–1445.
  18. T.J. Mason, Sonochemistry, Oxford Chemistry Primers, USA, Oxford University Press, 2000.
  19. B. Büyükfidan, N. Büyükfidan, S. Özer, H. Göktaş, S. Kander, Bursa İlinin içme suyunu karşılayan Doganci baraj suyunun fiziksel ve kimyasal özellikleri, Çevre Sorunları Kongresi, İstanbul, Türkiye, 2008 (in Turkish).
  20. AWWA-APHA, Standard methods for the examination of water and wastewater, 21st ed., American Public Health Association, Bultimore, USA. Washington D.C., 2005.
  21. V.B. Rao, C++ neural networks and fuzzy logic, M&T Books, 1995.
  22. H. Elhatip, M.A. Komur, Evaluation of water quality parameters for the Mamasin dam in Aksaray in the Anatolian part of Turkey by means of artificial neural networks, Environ. Geol., 53 (2008) 1157–1164.
  23. G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems, 2 (1989) 303–314.
  24. K. Hornik, M. Stinchcombe, H. White, Multilayer feed forward networks are universal approximators, Neural Networks, 2(5) (1989) 359–366.
  25. M. Talebizadeh, A. Moridnejad, Uncertainty analysis for the forecast of lake level fluctuations using ensembles of ann and anfis models, Expert Syst. Appl., 38 (2011) 4126–4135.
  26. M.T. Hagan, M.B. Menhaj, Training feed forward networks with the Marquardt algorithm, Neural Networks, IEEE Trans., 5(6) (1994) 989–993.
  27. O. Kisi, Multi-layer perceptrons with Levenberg–Marquardt training algorithm for suspended sediment concentration prediction and estimation, Hydrolog. Sci. J., 49 (2004) 1025–1040.
  28. H.K. Cigizoglu, O. Kisi, Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data, Nord Hydrol., 36 (2005) 49–64.
  29. U. Okkan, A. Mollamahmutoğlu, Yiğitler Çayı günlük akımlarının yapay sinir ağları ve regresyon analizi ile modellenmesi, J. Sci. Technol. Dumlupınar Uni, 23 (2010) 33–48.
  30. U. Okkan, H.Y. Dalkilic, Reservoir inflow modeling with artificial neural networks: The case of Kemer Dam in Turkey, Fresen. Environ. Bull., 20 (2011) 3112 R.
  31. P. Coulibaly, F. Anctil, R. Aravena, B. Bobée, Artificial neural network modeling of water table depth fluctuations, Wat. Resour. Res., 37(4) (2001) 885–896.
  32. M. Kumar, N. Raghuwanshi, R. Singh, W. Wallender, W. Pruitt, Estimating evaporate transpiration using artificial neural networks, J. Irrig. Drain. E-ASCE, 128(4) (2002) 224–233.
  33. E. Coppola, F. Szidarovszky, M. Poulton, E. Charles, Artificial neural network approach for predicting transient water levels in a multi layered groundwater system under variable state, pumping and climate conditions, Hydrol. Eng., 8 (2003) 348– 360.
  34. A.A. Moghaddam, A. Nadiri, E. Fijani, Ability to study different models of artificial neural networks to evaluate groundwater water level in the hard formation, Paper presented at the Tenth Conference of Geological Society, Tehran, 2006.
  35. P.A. Maedeh, N. Mehrdadi, G.R.N. Bidhendi, H.Z. Abyaneh, Application of artificial neural network to predict total dissolved solids variations in groundwater of Tehran Plain, Iran, Int. J. Environ. Sust., 2(1) (2013) 10–20.
  36. W.W. Walker Jr, Significance of eutrophication in water supply reservoirs, J. AWWA, 75(1) (1983) 38–42.
  37. S. Bulut, R. Mert, K. Solak, M. Konuk, Selevir Baraj Gölü’nün bazı limnolojik özellikleri, Ekoloji, 20 (2011) 13–22 (in Turkish).
  38. B. Taş, Derbent Baraj Gölü (Samsun) su kalitesinin incelenmesi, Ekoloji, 15(61) (2006) 6–15 (in Turkish).
  39. S. Dirican, Evaluation of Kilickaya dam lake water quality, J. Agric. Fac. HR. U., 12(4) (2008) 25–31.
  40. H. Dayıoğlu, M.S. Özyurt, N. Bingöl, C. Yıldız, Kütahya ili içme sularının bazı fiziksel kimyasal ve bakteriyolojik özellikleri, DPÜ Fen Bilimleri Enstitüsü, 7 (2004) 71–90 (in Turkish).
  41. E. Şavik, S. Demer, Ü. Memiş, D.K. Doguç, T.A. Çalışkan, M.T. Sezer, F. Gültekin, N. Özgür, Isparta ve civarında tüketilen suların içerik ve sağlık açısından değerlendirilmesi, S.D.Ü. Tıp Fak. Derg., 19(3) (2012) 92–102 (in Turkish).
  42. Anonymous, Turkey Water Pollution Control Regulations, Tur. Rep. Off. Gaz., Dec. 31, 2004, No. 25687, Turkey, 2004.
  43. T. Yonar, M.Y. Kilic, Chemical oxygen demand and color removal from textile wastewater by UV/H2O2 using artificial neural networks, Wat. Environ. Res., 86 (2014) 2159–2165.