References
- W. Li, Y. Shi, L. Gao, J. Liu, Y. Cai, Occurrence, distribution
and potential affecting factors of antibiotics in sewage sludge
of wastewater treatment plants in China, Sci. Total Environ.,
445 (2013) 306–313.
- Y. Tan, Y. Guo, X. Gu, C. Gu, Effects of metal cations and fulvic
acid on the adsorption of ciprofloxacin onto goethite, Environ.
Sci. Pollut. Res., 22 (2015) 609–617.
- X. He, Z. Wang, X. Nie, Y. Yang, D. Pan, A.O. Leung, Z.
Cheng, Y. Yang, K. Li, K. Chen, Residues of fluoroquinolones
in marine aquaculture environment of the Pearl River Delta,
South China, Environ. Geochem. Health, 34 (2012) 323–335.
- Y. Picó, V. Andreu, Fluoroquinolones in soil—risks and challenges,
Anal. Bioanal. Chem., 387 (2007) 1287–1299.
- X. Peng, F. Hu, F.L. Lam, Y. Wang, Z. Liu, H. Dai, Adsorption
behavior and mechanisms of ciprofloxacin from aqueous solution
by ordered mesoporous carbon and bamboo-based carbon,
J. Colloid Interface Sci., 460 (2015) 349–360.
- X. Peng, K. Zhang, C. Tang, Q. Huang, Y. Yu, J. Cui, Distribution
pattern, behavior, and fate of antibacterials in urban
aquatic environments in South China, J. Environ. Monit., 13
(2011) 446–454.
- R. Zhang, G. Zhang, Q. Zheng, J. Tang, Y. Chen, W. Xu, Y. Zou,
X. Chen, Occurrence and risks of antibiotics in the Laizhou
Bay, China: impacts of river discharge, Ecotoxicol. Environ.
Saf., 80 (2012) 208–215.
- H. Chen, B. Gao, H. Li, Removal of sulfamethoxazole and ciprofloxacin
from aqueous solutions by graphene oxide, J. Hazard.
Mater., 282 (2015) 201–207.
- E.-S.I. El-Shafey, H. Al-Lawati, A.S. Al-Sumri, Ciprofloxacin
adsorption from aqueous solution onto chemically prepared
carbon from date palm leaflets, J. Environ. Sci., 24 (2012) 1579–
1586.
- Y. Wang, H. Ngo, W. Guo, Preparation of a specific bamboo
based activated carbon and its application for ciprofloxacin
removal, Sci. Total Environ., 533 (2015) 32–39.
- Y. Sun, Q. Yue, B. Gao, L. Huang, X. Xu, Q. Li, Comparative
study on characterization and adsorption properties of activated
carbons with H3PO4 and H4P2O7 activation employing
Cyperus alternifolius as precursor, Chem. Eng. J., 181 (2012)
790–797.
- Y. Kang, Z. Guo, J. Zhang, H. Xie, H. Liu, C. Zhang, Enhancement
of Ni (II) removal by urea-modified activated carbon
derived from Pennisetum alopecuroides with phosphoric acid
activation, J. Taiwan Inst. Chem. Eng., 60 (2016) 335-341.
- H. Liu, Q. Gao, P. Dai, J. Zhang, C. Zhang, N. Bao, Preparation
and characterization of activated carbon from lotus stalk with
guanidine phosphate activation: sorption of Cd (II), J. Anal.
Appl. Pyrolysis., 102 (2013) 7–15.
- Z. Guo, J. Zhang, H. Liu, Ultrahigh Rhodamin B adsorption
capacities from aqueous solution by activated carbon derived
from Phragmites australis doped with organic acid by phosphoric
acid activation, RSC Adv., 47 (2016) 40818–40827.
- L. Zheng, Z. Dang, X. Yi, H. Zhang, Equilibrium and kinetic
studies of adsorption of Cd (II) from aqueous solution using
modified corn stalk, J. Hazard. Mater., 176 (2010) 650–656.
- A. Bakar, A. Ashrif, N.S. Hassan, The effectiveness of corn
cob activated carbon in rainwater harvesting filtration system,
in: Technology, Informatics, Management, Engineering, and
Environment (TIME-E), 2014 2nd International Conference on
IEEE, 2014, pp. 86–89.
- L. Zheng, Z. Dang, C. Zhu, X. Yi, H. Zhang, C. Liu, Removal of
cadmium(II) from aqueous solution by corn stalk graft copolymers,
Bioresour. Technol., 101 (2010) 5820.
- S. Chen, Q. Yue, B. Gao, Q. Li, X. Xu, Removal of Cr(VI) from
aqueous solution using modified corn stalks: Characteristic,
equilibrium, kinetic and thermodynamic study, Chem. Eng. J.,
168 (2011) 909–917.
- M.R. Fathi, A. Asfaram, A. Farhangi, Removal of Direct Red 23
from aqueous solution using corn stalks: isotherms, kinetics
and thermodynamic studies, Spectrochim. Acta, Part., (2015)
364–372.
- S. Li, L. Sun, L. Wang, Y. Wang, Preparation and electrochemical
performance of corn straw-based nanoporous carbon, J.
Porous Mater., 22 (2015) 1351–1355.
- P.A. Gerin, F. Vliegen, J.-M. Jossart, Energy and CO2 balance
of maize and grass as energy crops for anaerobic digestion,
Bioresour. Technol., 99 (2008) 2620–2627.
- S. Weiß, A. Zankel, M. Lebuhn, S. Petrak, W. Somitsch, G. Guebitz,
Investigation of mircroorganisms colonising activated
zeolites during anaerobic biogas production from grass silage,
Bioresour. Technol., 102 (2011) 4353–4359.
- H. Pobeheim, B. Munk, H. Lindorfer, G.M. Guebitz, Impact of
nickel and cobalt on biogas production and process stability
during semi-continuous anaerobic fermentation of a model
substrate for maize silage, Water Res., 45 (2011) 781–787.
- H. Boehm, Chemical Identification of Surface Groups, Adv.
Catal., (1966) 179–274.
- M. Kosmulski, The pH dependent surface charging and points
of zero charge. VI. Update, J. Colloid Interface Sci., 426 (2014)
209–212.
- F. Ansari, M. Ghaedi, M. Taghdiri, A. Asfaram, Application of
ZnO nanorods loaded on activated carbon for ultrasonic assisted
dyes removal: Experimental design and derivative spectrophotometry
method, Ultrason. Sonochem., 33 (2016) 197–209.
- M. Roosta, M. Ghaedi, A. Asfaram, Simultaneous ultrasonic-assisted removal of malachite green and safranin O by copper
nanowires loaded on activated carbon: central composite
design optimization, Rsc Adv., 5 (2015) 57021–57029.
- M. Donohue, G. Aranovich, Classification of Gibbs adsorption
isotherms, Adv. Colloid Inter. Sci., 76 (1998) 137–152.
- S. Carabineiro, T. Thavorn-Amornsri, M. Pereira, P. Serp, J.
Figueiredo, Comparison between activated carbon, carbon
xerogel and carbon nanotubes for the adsorption of the antibiotic
ciprofloxacin, Catal. Today, 186 (2012) 29–34.
- H. Liu, J. Zhang, H.H. Ngo, W. Guo, H. Wu, Z. Guo, C. Cheng,
C. Zhang, Effect on physical and chemical characteristics of
activated carbon on adsorption of trimethoprim: mechanisms
study, RSC Adv., (2015) 85187–85195.
- N. Yoshizawa, K. Maruyama, Y. Yamada, M. Zielinska-Blajet,
XRD evaluation of CO2 activation process of coal-and coconut
shell-based carbons, Fuel, 79 (2000) 1461–1466.
- G. Fang, H. Li, Z. Chen, X. Liu, Preparation and characterization
of stearic acid/expanded graphite composites as thermal
energy storage materials, Energy, 35 (2010) 4622–4626.
- Y. Juan, Q. Ke-Qiang, Preparation of activated carbon by chemical
activation under vacuum, Environ. Sci. Technol., 43 (2009)
3385–3390.
- S. Min, J. Han, E. Shin, J. Park, Improvement of cadmium ion
removal by base treatment of juniper fiber, Water Res., 38
(2004) 1289-1295.
- A. Asfaram, M. Ghaedi, G.R. Ghezelbash, Biosorption of Zn2+,
Ni2+ and Co2+ from water samples onto Yarrowia lipolytica
ISF7 using a response surface methodology, and analyzed by
inductively coupled plasma optical emission spectrometry
(ICP-OES), Rsc Adv., 6 (2016) 23599–23610.
- H. Liu, X. Wang, G. Zhai, J. Zhang, C. Zhang, N. Bao, C. Cheng,
Preparation of activated carbon from lotus stalks with the
mixture of phosphoric acid and pentaerythritol impregnation
and its application for Ni (II) sorption, Chem. Eng. J., 209 (2012)
155–162.
- S. Carabineiro, T. Thavorn-Amornsri, M. Pereira, J. Figueiredo,
Adsorption of ciprofloxacin on surface-modified carbon materials,
Water Res., 45 (2011) 4583–4591.
- H. Mazaheri, M. Ghaedi, A. Asfaram, S. Hajati, Performance of
CuS nanoparticle loaded on activated carbon in the adsorption
of methylene blue and bromophenol blue dyes in binary aqueous
solutions: Using ultrasound power and optimization by
central composite design, J. Mol. Liq., 219 (2016) 667–676.
- A. Asfaram, M. Ghaedi, S. Hajati, A. Goudarzi, E.A. Dil, Screening
and optimization of highly effective ultrasound-assisted
simultaneous adsorption of cationic dyes onto Mn-doped Fe3O4 -
nanoparticle-loaded activated carbon,Ultrason. Sonochem., 34
(2017) 1–12.
- S. Agarwal, I. Tyagi, V.K. Gupta, A.R. Bagheri, M. Ghaedi, A.
Asfaram, S. Hajati, A.A. Bazrafshan, Rapid adsorption of ternary
dye pollutants onto copper (I) oxide nanoparticle loaded
on activated carbon: Experimental optimization via response
surface methodology, J. Environ. Chem. Eng., 4 (2016) 1769–1779.
- M. Ghaedi, E. Barakat, S. Hajati, A. Asfaram, A. Bazrafshan,
Efficient adsorption of Europhtal onto activated carbon modified
with ligands (1E, 2E)-1,2-bis (pyridin-4-ylmethylene)
hydrazine (M) and (1E, 2E)-1,2-bis (pyridin-3-ylmethylene)
hydrazine (SCH-4); Response surface methodology, Rsc
Advances. 5 (2015) 42376–42387.
- M. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted
iron catalysts, Acta physiochim. URSS, 12 (1940) 217–
222.
- H. Demiral, G. Gündüzoğlu, Removal of nitrate from aqueous
solutions by activated carbon prepared from sugar beet
bagasse,Bioresour. Technol., 101 (2010) 1675–1680.
- M.E.R. Jalil, M. Baschini, K. Sapag, Inflence of pH and antibiotic
solubility on the removal of ciprofloxacin from aqueous
media using montmorillonite,Appl. Clay Sci., 114 (2015) 69–76.
- C. Fallati, A. Ahumada, R. Manzo, El perfil de solubilidad de la
ciprofloxacina en función del pH, Acta Farm. Bonaerense., 13
(1994) 73–77.
- D.P. Pursell, Adapting to student learning styles: Engaging
students with cell phone technology in organic chemistry
instruction, J. Chem. Educ., 86 (2009) 1219.
- W. Chen, L. Duan, L. Wang, D. Zhu, Adsorption of hydroxyl-
and amino-substituted aromatics to carbon nanotubes,
Environ. Sci. Technol., 42 (2008) 6862–6868.