References

  1. W. Li, Y. Shi, L. Gao, J. Liu, Y. Cai, Occurrence, distribution and potential affecting factors of antibiotics in sewage sludge of wastewater treatment plants in China, Sci. Total Environ., 445 (2013) 306–313.
  2. Y. Tan, Y. Guo, X. Gu, C. Gu, Effects of metal cations and fulvic acid on the adsorption of ciprofloxacin onto goethite, Environ. Sci. Pollut. Res., 22 (2015) 609–617.
  3. X. He, Z. Wang, X. Nie, Y. Yang, D. Pan, A.O. Leung, Z. Cheng, Y. Yang, K. Li, K. Chen, Residues of fluoroquinolones in marine aquaculture environment of the Pearl River Delta, South China, Environ. Geochem. Health, 34 (2012) 323–335.
  4. Y. Picó, V. Andreu, Fluoroquinolones in soil—risks and challenges, Anal. Bioanal. Chem., 387 (2007) 1287–1299.
  5. X. Peng, F. Hu, F.L. Lam, Y. Wang, Z. Liu, H. Dai, Adsorption behavior and mechanisms of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based carbon, J. Colloid Interface Sci., 460 (2015) 349–360.
  6. X. Peng, K. Zhang, C. Tang, Q. Huang, Y. Yu, J. Cui, Distribution pattern, behavior, and fate of antibacterials in urban aquatic environments in South China, J. Environ. Monit., 13 (2011) 446–454.
  7. R. Zhang, G. Zhang, Q. Zheng, J. Tang, Y. Chen, W. Xu, Y. Zou, X. Chen, Occurrence and risks of antibiotics in the Laizhou Bay, China: impacts of river discharge, Ecotoxicol. Environ. Saf., 80 (2012) 208–215.
  8. H. Chen, B. Gao, H. Li, Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide, J. Hazard. Mater., 282 (2015) 201–207.
  9. E.-S.I. El-Shafey, H. Al-Lawati, A.S. Al-Sumri, Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets, J. Environ. Sci., 24 (2012) 1579– 1586.
  10. Y. Wang, H. Ngo, W. Guo, Preparation of a specific bamboo based activated carbon and its application for ciprofloxacin removal, Sci. Total Environ., 533 (2015) 32–39.
  11. Y. Sun, Q. Yue, B. Gao, L. Huang, X. Xu, Q. Li, Comparative study on characterization and adsorption properties of activated carbons with H3PO4 and H4P2O7 activation employing Cyperus alternifolius as precursor, Chem. Eng. J., 181 (2012) 790–797.
  12. Y. Kang, Z. Guo, J. Zhang, H. Xie, H. Liu, C. Zhang, Enhancement of Ni (II) removal by urea-modified activated carbon derived from Pennisetum alopecuroides with phosphoric acid activation, J. Taiwan Inst. Chem. Eng., 60 (2016) 335-341.
  13. H. Liu, Q. Gao, P. Dai, J. Zhang, C. Zhang, N. Bao, Preparation and characterization of activated carbon from lotus stalk with guanidine phosphate activation: sorption of Cd (II), J. Anal. Appl. Pyrolysis., 102 (2013) 7–15.
  14. Z. Guo, J. Zhang, H. Liu, Ultrahigh Rhodamin B adsorption capacities from aqueous solution by activated carbon derived from Phragmites australis doped with organic acid by phosphoric acid activation, RSC Adv., 47 (2016) 40818–40827.
  15. L. Zheng, Z. Dang, X. Yi, H. Zhang, Equilibrium and kinetic studies of adsorption of Cd (II) from aqueous solution using modified corn stalk, J. Hazard. Mater., 176 (2010) 650–656.
  16. A. Bakar, A. Ashrif, N.S. Hassan, The effectiveness of corn cob activated carbon in rainwater harvesting filtration system, in: Technology, Informatics, Management, Engineering, and Environment (TIME-E), 2014 2nd International Conference on IEEE, 2014, pp. 86–89.
  17. L. Zheng, Z. Dang, C. Zhu, X. Yi, H. Zhang, C. Liu, Removal of cadmium(II) from aqueous solution by corn stalk graft copolymers, Bioresour. Technol., 101 (2010) 5820.
  18. S. Chen, Q. Yue, B. Gao, Q. Li, X. Xu, Removal of Cr(VI) from aqueous solution using modified corn stalks: Characteristic, equilibrium, kinetic and thermodynamic study, Chem. Eng. J., 168 (2011) 909–917.
  19. M.R. Fathi, A. Asfaram, A. Farhangi, Removal of Direct Red 23 from aqueous solution using corn stalks: isotherms, kinetics and thermodynamic studies, Spectrochim. Acta, Part., (2015) 364–372.
  20. S. Li, L. Sun, L. Wang, Y. Wang, Preparation and electrochemical performance of corn straw-based nanoporous carbon, J. Porous Mater., 22 (2015) 1351–1355.
  21. P.A. Gerin, F. Vliegen, J.-M. Jossart, Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion, Bioresour. Technol., 99 (2008) 2620–2627.
  22. S. Weiß, A. Zankel, M. Lebuhn, S. Petrak, W. Somitsch, G. Guebitz, Investigation of mircroorganisms colonising activated zeolites during anaerobic biogas production from grass silage, Bioresour. Technol., 102 (2011) 4353–4359.
  23. H. Pobeheim, B. Munk, H. Lindorfer, G.M. Guebitz, Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage, Water Res., 45 (2011) 781–787.
  24. H. Boehm, Chemical Identification of Surface Groups, Adv. Catal., (1966) 179–274.
  25. M. Kosmulski, The pH dependent surface charging and points of zero charge. VI. Update, J. Colloid Interface Sci., 426 (2014) 209–212.
  26. F. Ansari, M. Ghaedi, M. Taghdiri, A. Asfaram, Application of ZnO nanorods loaded on activated carbon for ultrasonic assisted dyes removal: Experimental design and derivative spectrophotometry method, Ultrason. Sonochem., 33 (2016) 197–209.
  27. M. Roosta, M. Ghaedi, A. Asfaram, Simultaneous ultrasonic-assisted removal of malachite green and safranin O by copper nanowires loaded on activated carbon: central composite design optimization, Rsc Adv., 5 (2015) 57021–57029.
  28. M. Donohue, G. Aranovich, Classification of Gibbs adsorption isotherms, Adv. Colloid Inter. Sci., 76 (1998) 137–152.
  29. S. Carabineiro, T. Thavorn-Amornsri, M. Pereira, P. Serp, J. Figueiredo, Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin, Catal. Today, 186 (2012) 29–34.
  30. H. Liu, J. Zhang, H.H. Ngo, W. Guo, H. Wu, Z. Guo, C. Cheng, C. Zhang, Effect on physical and chemical characteristics of activated carbon on adsorption of trimethoprim: mechanisms study, RSC Adv., (2015) 85187–85195.
  31. N. Yoshizawa, K. Maruyama, Y. Yamada, M. Zielinska-Blajet, XRD evaluation of CO2 activation process of coal-and coconut shell-based carbons, Fuel, 79 (2000) 1461–1466.
  32. G. Fang, H. Li, Z. Chen, X. Liu, Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials, Energy, 35 (2010) 4622–4626.
  33. Y. Juan, Q. Ke-Qiang, Preparation of activated carbon by chemical activation under vacuum, Environ. Sci. Technol., 43 (2009) 3385–3390.
  34. S. Min, J. Han, E. Shin, J. Park, Improvement of cadmium ion removal by base treatment of juniper fiber, Water Res., 38 (2004) 1289-1295.
  35. A. Asfaram, M. Ghaedi, G.R. Ghezelbash, Biosorption of Zn2+, Ni2+ and Co2+ from water samples onto Yarrowia lipolytica ISF7 using a response surface methodology, and analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES), Rsc Adv., 6 (2016) 23599–23610.
  36. H. Liu, X. Wang, G. Zhai, J. Zhang, C. Zhang, N. Bao, C. Cheng, Preparation of activated carbon from lotus stalks with the mixture of phosphoric acid and pentaerythritol impregnation and its application for Ni (II) sorption, Chem. Eng. J., 209 (2012) 155–162.
  37. S. Carabineiro, T. Thavorn-Amornsri, M. Pereira, J. Figueiredo, Adsorption of ciprofloxacin on surface-modified carbon materials, Water Res., 45 (2011) 4583–4591.
  38. H. Mazaheri, M. Ghaedi, A. Asfaram, S. Hajati, Performance of CuS nanoparticle loaded on activated carbon in the adsorption of methylene blue and bromophenol blue dyes in binary aqueous solutions: Using ultrasound power and optimization by central composite design, J. Mol. Liq., 219 (2016) 667–676.
  39. A. Asfaram, M. Ghaedi, S. Hajati, A. Goudarzi, E.A. Dil, Screening and optimization of highly effective ultrasound-assisted simultaneous adsorption of cationic dyes onto Mn-doped Fe3O4 - nanoparticle-loaded activated carbon,Ultrason. Sonochem., 34 (2017) 1–12.
  40. S. Agarwal, I. Tyagi, V.K. Gupta, A.R. Bagheri, M. Ghaedi, A. Asfaram, S. Hajati, A.A. Bazrafshan, Rapid adsorption of ternary dye pollutants onto copper (I) oxide nanoparticle loaded on activated carbon: Experimental optimization via response surface methodology, J. Environ. Chem. Eng., 4 (2016) 1769–1779.
  41. M. Ghaedi, E. Barakat, S. Hajati, A. Asfaram, A. Bazrafshan, Efficient adsorption of Europhtal onto activated carbon modified with ligands (1E, 2E)-1,2-bis (pyridin-4-ylmethylene) hydrazine (M) and (1E, 2E)-1,2-bis (pyridin-3-ylmethylene) hydrazine (SCH-4); Response surface methodology, Rsc Advances. 5 (2015) 42376–42387.
  42. M. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta physiochim. URSS, 12 (1940) 217– 222.
  43. H. Demiral, G. Gündüzoğlu, Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse,Bioresour. Technol., 101 (2010) 1675–1680.
  44. M.E.R. Jalil, M. Baschini, K. Sapag, Inflence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite,Appl. Clay Sci., 114 (2015) 69–76.
  45. C. Fallati, A. Ahumada, R. Manzo, El perfil de solubilidad de la ciprofloxacina en función del pH, Acta Farm. Bonaerense., 13 (1994) 73–77.
  46. D.P. Pursell, Adapting to student learning styles: Engaging students with cell phone technology in organic chemistry instruction, J. Chem. Educ., 86 (2009) 1219.
  47. W. Chen, L. Duan, L. Wang, D. Zhu, Adsorption of hydroxyl- and amino-substituted aromatics to carbon nanotubes, Environ. Sci. Technol., 42 (2008) 6862–6868.