References
- G. Ziemacki, G. Viviano, F. Merli, Heavy metals: sources and
environmental presence, Ann. Ist. Super. Sanità, 25 (1989) 531–
536.
- J.O. Duruibe, M.O.C. Ogwuegbu, J.N. Egwurugwu, Heavy
metal pollution and human biotoxic effects, Int. J. Phys. Sci., 2
(2007) 112–118.
- M. Wana, C. Kan, B.D. Rogel, L.P. Dalida, Adsorption of copper
(II) and lead (II) ions from aqueous solution on chitosan-coated
sand, Carbohyd. Polym., 80 (2010) 891–899.
- S. Malar, S. Vikram, P. Favas, V. Perumal, Lead heavy metal toxicity
induced changes on growth and antioxidative enzymes
level in water hyacinths [Eichhornia crassipes (Mart.)], Botanical
Studies, 54 (2014) 1–11.
- D. Tilaki, R. Ali, Study on removal of cadmium from water
environment by adsorption on GAC, BAC and biofilter, Diffuse
Pollution Conference, Dublin, 8B Ecology, (2003) 35–39.
- A.L. Mendoza, J.L. Reyes, E. Melendez, D. Martín, M.C.
Namorado, E. Sanchez, L.M. Del, Alpha-tocopherol protects
against the renal damage caused by potassium dichromate,
Toxicology, 218 (2006) 237–246.
- K.A. Patlolla, C. Barnes, D. Hackett, P.B. Tchollnwou, Potassium
dichromate induced cytotoxicity, genotoxicity and oxidative
stress in human liver carcinoma (HepG2) cells, Int. J.
Environ. Res., 6 (2009) 643–653.
- D.P. Vihol, J. Patel, R.D. Varia, J.M. Pater, D.G. Ghodasara, B.P.
Joshi, K.S. Prajapati, Effect of sodium dichromate on haemato-biochemical parameters in wistar rats, J. Pharmacology, 7
(2012) 58–63.
- X. Zhang, R. Bai, Mechanisms and kinetics of humic acid
adsorption onto chitosan-coated granules, J. Colloid Interf.
Sci., 264 (2003) 30–38.
- S. Malkondu, A. Kocak M. Yilmaz, Immobilization of two
azacrown ethers on chitosan: evaluation of selective extraction
ability toward Cu(II) and Ni(II), J. Macromol. Sci.—Part A:
Pure Appl. Chem., 46 (2009) 745–750.
- W.S Wan Ngah, A. Musa, Adsorption of humic acid onto chitin
and chitosan, J. Appl. Polym. Sci, 69 (1998) 2305–2310.
- J. Kumirska, M. X. Weinhold, J. Thoming, P. Stepnowski, Biomedical
activity of chitin/chitosan based materials—influence
of physicochemical properties apart from molecular weight
and degree of N-Acetylation, Polymers, 3 (2011) 1875–1901.
- Y. Lu, J. He, G. Luo, An improved synthesis of chitosan bead
for Pb(II) adsorption, Chem. Eng. J., 226 (2013) 271–278.
- J.B. Dima, C. Sequeiros, N.E. Zaritzky, Hexavalent chromium
removal in contaminated water using reticulated chitosan
micro/nanoparticles from seafood processing wastes, Chemosphere,
141 (2015) 100–111.
- E. Ghabbour, G. Davies, Humic substances (structures, models
and function). Royal Society of Chemistry, UK, pp. 19–30.
- B. El-Eswed, F. Khalili, Adsorption of Cu(II) and Ni(II) on solid
humic acid from the Azraq area, Jordan, J. Colloid Interf. Sci.,
299 (2006) 497–503.
- H. Baker, F. Khalili, Analysis of the removal of lead(II) from
aqueous solutions by adsorption onto insolubilized humic
acid: temperature and pH dependence. Anal. Chim. Acta, 516
(2004) 179–186.
- J. Zhao, G. Binjiang, Coating Fe3O4 magnetic manoparticles
with humic acid for high efficient removal of heavy metals in
water, Environ. Sci. Technol., 42 (2008) 6949–6954.
- W.L. Yan, R. Bai. Adsorption of lead and humic acid on chitosan
hydrogel beads, Water Res., 39 (2004) 688–698.
- W.S. Wan Ngah, M.A. Hanafiah, S.S. Yong, Adsorption of
humic acid from aqueous solutions on crosslinked chitosan–epichlorohydrin beads: Kinetics and isotherm studies, Colloid
Surface B: Biointerfaces, 65 (2008) 18–24.
- S.J. Santosa, D. Siswanta, A. Kumiawan, W.H. Rahmanto,
Hybrid of chitin and humic acid as high performance sorbent
for Ni(II), Surf. Sci., 601 (2007) 5155–5161.
- S.J. Santosa, D. Siswanta, S. Sudiono, M. Sehol, Synthesis and
utilization of chitin–humic acid hybrid as sorbent for Cr(III),
Surf. Sci., 601 (2007) 5148–5154.
- E. Repoa, J.K. Warchol, T.A. Kurniawan, M.E.T. Sillanpää,
Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified
chitosan: kinetic and equilibrium modeling, Chem. Eng.
J., 161 (2010) 73–82.
- F. Zhao, E. Repo, D. Yin, M.E.T. Sillanpää, Adsorption of Cd(II)
and Pb(II) by a novel EGTA-modified chitosan material: Kinetics
and isotherms, J. Colloid Interface Sci., 409 (2013) 174–182.
- F. Zhao, E. Repo, M. Sillanpää, Y. Meng, D. Yin, W.Z. Tang,
Green synthesis of magnetic EDTA- and/or DTPA-crosslinked
chitosan adsorbents for highly efficient removal of metals,
Ind. Eng. Chem. Res., 54 (2015) 1271−1281.
- A. Rodrigues, A. Brito, P. Janknecht, M. F. Proenc, R.
Nogueira,Quantification of humic acids in surface water:
effects of divalent cations, pH, and filtration J. Environ. Monit.,
11 (2009) 377–382.
- Y. Wu, M. Hussain, R. Fassihi, Development of a simple
method for determination of glucosamine release from modified
release matrix tablets, J. Pharmaceut. Biomed., 38 (2005)
263–269.
- M. Schnitzerin, M. Schnitzer, S. U. Khan, (eds.), Soil Organic
Matter, Elsevier Scientific Publishing Company (1978) pp.
1–64.
- G. R. Choppin, L. Kullberg, Proton thermodynamics of humic
acid. J. Inorg. Nucl. Chem., (40) (1978) 651–654.
- S. Samal, R.R. Das, S. Acharya, P. Mohapatra, R.K.A. Dey,
Comparative study on metal ion uptake behavior of chelating
resins derived from the formaldehyde–condensed
phenolic Schiff bases of 4,4’-diaminodiphenylsulfone and
hydroxybenzaldehydes. Polym. Plast. Technol. Eng., 41(2)
(2002) 229–246.
- R. von Wandruszka, Humic acids: their detergent qualities
and potential uses in pollution remediation, Geochem. Trans.,
1 (2000) 10–15.
- A. Barth, Infrared spectroscopy of proteins, Biochim. Biophys.
Acta, 1767 (2007) 1073–1101.
- J. Coates, Interpretation of Infrared Spectra, A Practical
Approach, in R.A. Meyers (Ed.), Encyclopedia of Analytical
Chemistry, John Wiley & Sons Ltd, (2000) pp. 10815–10837.
- M.A. Shaker, Thermodynamics and kinetics of bivalent cadmium
biosorption onto nanoparticles of chitosan-based biopolymers,
J. Taiwan Inst. Chem. Eng., 47 (2015) 79–90.
- M.T. Rosado, M. Leonor, T.S. Durat, R. Fausto, Vibrational spectra
of acid and alkaline glycine salts, Vibr. Spectros., 16 (1998)
35–54.
- C. Milne, D. Kinniburgh, W. van Riemsdijk, E. Tipping, “Generic
NICA-Donnan model parameters for metal-ion binding by
humic Substances, Environ. Sci. Technol., 37 (2003) 958–971.
- Q.Z. Wang, X.G. Chen, N. Liu, S.X. Wang, C.S. Liu, X.H. Meng
C.G. Liu, Protonation constants of chitosan with different
molecular weight and degree of deacetylation, Carbohyd.
Polym., 65 (2006) 194–201.
- M.A. Shaker, H.M. Albishri, Dynamics and thermodynamics
of toxic metals adsorption onto soil-extracted humic acid, Chemosphere,
111 (2014) 587–595.
- D.G. Kinniburgh, W.H. Riemsdijk, L.K. Koopal, M. Borkovec,
M.F. Benedetti, M.J. Avena, Ion binding to natural organic matter:
competition, heterogeneity, stoichiometry and thermodynamic
consistency, Colloids Surfaces A: Physicochem. Eng.
Asp., 151 (1999) 147–166.
- M.E. Essington, Soil and water chemistry: An integrative
approach. 2nd ed., CRC Press, Boca Raton, FL (2003) p. 179.
- I. Langmuir, the adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1362–1403.
- H.R. Tashauoei, H.M. Attar, M.M. Amin, M. Kamali, M.
Nikaeen, V. Dastjerdi, Removal of cadmium and humic acid
from aqueous solutions using surface modified nanozeolite A.
Int. J. Environ. Sci. Tech., 7 (2010) 497–508.
- G. MaKay, J.F. Porter, Equilibrium parameters for the sorption
of copper, cadmium and zinc ions onto peat. J. Chem. Tech.
Biotechnol., 69 (1997) 309–320.
- J. Hizal, R. Apak, Modeling of copper(II) and lead(II) adsorption
on kaolinite–based clay minerals individually and in the
presence of humic acid. J. Colloid. Interface Sci., 295 (2006)
1–13.
- A.T. Paulino, M.R. Guilherme, A.V. Reis, E.B. Tambourgi, J.
Nozaki, E.C. Muniz, Capacity of adsorption of Pb2+ and Ni2+ from aqueous solutions by chitosan produced from silkworm
chrysalides in different degrees of deacetylation, J. Hazard.
Mater., 147 (2007) 139–147.
- H.H. Tran, F.A. Roddick, J.A. O’donnel, Comparison of chromatography
and desiccant silica gel for the adsorption of
metal ions I. Adsorption and kinetics, Wat. Res., 33 (1999)
2992–3000.
- A.K. Kushwaha, N. Gupta, M.C. Chattopadhyaya, Adsorption
behavior of lead onto a new class of functionalized silica gel,
Arab. J. Chem., 10 (2017) S81–S89.
- Y.S. Ho, G. McKay, The kinetics of sorption of divalent metal
ions onto sphagnum moss peat, Wat. Res., 34 (2000) 735–742.
- Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by
Peat, Chem. Eng. J., 70 (1998) 115–124.
- R. Donat, A. Akdogan, E. Erdem, H. Ceti, Thermodynamics of
Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous
solutions. J. Colloid Interf. Sci., 286 (2005) 43–52.
- M. Giovanela, E. Parlanti, E.J. Soriano-Sierra, M.S. Soldi, M. M.
D. Sierra, Elemental compositions, FT-IR spectra and thermal
behavior of sedimentary fulvic and humic acids from aquatic
and terrestrial environments, Geochem. J., 38 (2004) 255–264.
- M. Tatzber, M. Stemmer, H. Spiegel, C. Katzlberger, G. Haberhauer,
A. Mentler, H.M. Gerzabek, FTIR-spectroscopic characterization
of humic acids and humin fractions obtained
by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures,
J. Plant Nutr. Soil Sci., 170 (2007) 522–529.