References

  1. S.K. Khetan, T.J. Collins, Human pharmaceuticals in the aquatic environment: a challenge to green chemistry, Chem. Rev., 107 (2007) 2319–2364.
  2. P. Verlicchi, M. Al Aukidy, E. Zambello, Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment-a review, Sci. Total Environ., 429 (2012) 123–155.
  3. A.R. Khataee, M. Fathinia, S.W. Joo, Simultaneous monitoring of photocatalysis of three pharmaceuticals by immobilized TiO2 nanoparticles: chemometric assessment, intermediates identification and ecotoxicological evaluation, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 112 (2013) 33–45.
  4. D. Nasuhoglu, A. Rodayan, D. Berk, V. Yargeau, Removal of the antibiotic levofloxacin (levo) in water by ozonation and TiO2 photocatalysis, Chem. Eng. J., 189-190 (2012) 41–46.
  5. M.A. Hassan, M.S. Salem, M.S. Sueliman, N.M. Najib, Characterization of Famotidine polymorphic forms, Int. J. Pharm., 149 (1997) 227–232.
  6. F.M. Mady, A.E. Abou-Taleb, K.A. Khaled, K. Yamasaki, D. Iohara, K. Taguchi, M. Anraku, F. Hirayama, K. Uekama, M. Otagiri, Evaluation of carboxymethyl-beta-cyclodextrin with acid function: improvement of chemical stability, oral bioavailability and bitter taste of Famotidine, Int. J. Pharm., 397 (2010) 1–8.
  7. J.C. Breitner, K.A. Welsh, M.J. Helms, P.C. Gaskell, B.A. Gau, A.D. Roses, M.A. Pericak-Vance, A.M. Saunders, Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs, Neurobiol. Aging, 16 (1995) 523–527.
  8. S.P. Molinary, R. aminski, A.D. Rocco, M.D. Yahr, The use of Famotidine in treatment of Parkinson’s disease: a pilot study, J. Neural Transm., 9 (1995) 243–248.
  9. K.W. Lee, S.R. Kayser, R.H. Hongo, Z.H. Tseng, M.M. Scheinman, Famotidine and long QT syndrome, Am. J. Cardiol., 93 (2004) 1325–1327.
  10. S. Murphy, C. Saurel, A. Morrissey, J. Tobin, M. Oelgemoller, K. Nolan, Photocatalytic activity of a porphyrin/TiO2 composite in the degradation of pharmaceuticals, Appl. Catal. B: Environ., 119–120 (2012) 156–165.
  11. J. Karpińska, A. Sokoł, M. Kobeszko, B. Starczewska, U. Czyzewska, M. Hryniewicka, Study on degradation process of Famotidine hydrochloride in aqueous samples, Toxicol. Environ. Chem., 92 (2010) 1409–1422.
  12. W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, A.R. Mohamed, Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization, Nanoscale, 6 (2014) 1946−2008.
  13. S. Liu, J. Yu, M. Jaroniec, Anatase TiO2 with dominant high-energy {001} facets: synthesis, properties, and applications, Chem. Mater., 23 (2011) 4085−4093.
  14. C. Hua, X. Dong, X. Wang, M. Xue, X. Zhang, H. Ma, Enhanced photocatalytic activity of W-doped and W-La-codoped TiO2 nanomaterials under simulated sunlight, J. Nanomater., (2014) 10.
  15. M. Ni, M.K.H. Leung, D.Y.C. Leung, L.K. Samathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renew. Sustain. Energy Rev., 11 (2007) 401−425.
  16. R.J. Ellingson, J.B. Asbury, S. Ferrere, H.N. Ghosh, J.R. Sprague, T. Lian, A.J. Nozik, Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru(4, 4'-dicarboxy-2, 2'-bipyridine)2(NCS)2] by infrared transient absorption, J. Phys. Chem., B 102 (1998) 6455−6458.
  17. G. Elena, Linkers for anchoring sensitizers to semiconductor nanoparticles, Coord. Chem. Rev., 248 (2004) 1283−1297.
  18. M. Gratzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. Chem., 44 (2005) 6841−6851.
  19. W.R. Duncan, O.V. Prezhdo, Theoretical studies of photo induced electron transfer in dye-sensitized TiO2, Annu. Rev. Phys. Chem., 58 (2007) 143−184.
  20. W. Kim, T. Tachikawa, T. Majima, W. Choi, Photocatalysis of dye-sensitized TiO2 nanoparticles with thin overcoat of Al2O3: enhanced activity for H2 production and dechlorination of CCl4, J. Phys. Chem., C 113 (2009) 10603−10609.
  21. D. Chatterjee, S. Dasgupta, N.N. Rao, Visible light assisted photodegradation of halocarbons on the dye modified TiO2 surface using visible light, Sol. Energy Mater. Sol. Cells, 90 (2006) 1013−1020.
  22. P. Chowdhury, J. Moreira, H. Gomaa, A.K. Ray,Visible-solar-light-driven photocatalytic degradation of phenol with dye-sensitized TiO2: parametric and kinetic study, Ind. Eng. Chem. Res., 51 (2012) 4523–4532.
  23. G. Xing, C. Tang, B. Zhang, L. Zhao, Y. Su, X. Wang, A highly uniform ZnO/NaTaO3 nanocomposite: enhanced self-sensitized degradation of colored pollutants under visible light, J. Alloy Compd., 647 (2015) 287–294.
  24. H. Katsumata, M. Taniguchi, S. Kaneco, T. Suzuki, Photocatalytic degradation of bisphenol A by Ag3PO4 under visible light, Catal. Commun., 34 (2013) 30−34.
  25. J. Su, L. Zhu, P. Geng, G. Chen, Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light, J. Hazard. Mater., 316 (2016) 159–168.
  26. P. Kubelka, F. Munk, Ein Beitrag Zur Optik Der Farbanstriche, Z. Techn. Phys., 12 (1931) 593−601.
  27. G. Naresh, T.K. Mandal, Excellent sun-light-driven photocatalytic activity by aurivillius layered perovskites, Bi5−xLaxTi3FeO15 (x = 1, 2), ACS Appl. Mater. Interfaces, 6 (2014) 21000−21010.
  28. C.S. Turchi, D.F. Ollis, Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack, J. Catal., 122 (1990) 178−192.
  29. S. Kumar, T. Surendar, A. Baruah, V. Shanker, Synthesis of a novel and stable g-C3N4−Ag3PO4 hybrid nanocomposite photo catalyst and study of the photocatalytic activity under visible light irradiation, J. Mater. Chem., A 1 (2013) 5333−5340.
  30. H.X. Li, Z.F. Bian, J. Zhu, Y.N. Huo, H. Li, Y.F. Lu, Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity, J. Am. Chem. Soc., 129 (2007) 4538–4539.
  31. V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration, J. Am. Chem. Soc., 126 (2004) 4943–4950.
  32. S. Bassaid, B. Bellal, M. Trari, Photocatalytic degradation of orange II on the novel hetero-system WS2/TiO2 under UV light, Reac. Kinet. Mech. Cat., 115 (2015) 389–400.
  33. P. Ren, Y. Li, Y. Zhang, H. Wang, Q. Wang, Photoelectric properties of DSSCs sensitized by phloxine B and bromophenol blue, Int. J. Photoenergy 2016, (2016) 11 pages.
  34. X.F. Sun, B.B. Guo, L. He, P.F. Xia, S.G. Wang, Electrically accelerated removal of organic pollutants by a three-dimensional graphene aerogel, Am. Int. Chem. Eng., 62 (2016) 2154−2162.
  35. A.J. Nozik, R. Memming, Physical chemistry of semiconductor- liquid interfaces, J. Phys. Chem., 100 (1996) 13061–13078.
  36. L. Pan, J. Zou, X. Liu, X. Liu, S. Wang, X. Zhang, L. Wang, Visible-light-induced photodegradation of rhodamine B over hierarchical TiO2: effects of storage period and water-mediated adsorption switch, Ind. Eng. Chem. Res., 51 (2012) 12782−12786.
  37. Y. Su, L. Peng, J. Guo, S. Huang, L. Lv, X. Wang, Tunable optical and photocatalytic performance promoted by nonstoichiometric control and site-selective codoping of trivalent ions in NaTaO3, J. Phys. Chem., C118 (2014) 10728−10739.
  38. A. Fujishima, T.N. Tao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev., 1 (2000) 1−21.
  39. W.J. Kima, D. Pradhanb, B.-K. Minc, Y.Sohna, Adsorption/ photocatalytic activity and fundamental natures of BiOCl and BiOClxI1−x prepared in water and ethylene glycol environments, and Ag and Au-doping effects, Appl. Catal. B: Environ., 147 (2014) 711–725.
  40. S. Murphy, C. Saurel, A. Morrissey, J. Tobin, M. Oelgemoller, K. Nolan, Photocatalytic activity of a porphyrin/TiO2 composite in the degradation of pharmaceuticals, Appl. Catal. B: Environ., 119–120 (2012) 156–165.