References
- S.K. Khetan, T.J. Collins, Human pharmaceuticals in the
aquatic environment: a challenge to green chemistry, Chem.
Rev., 107 (2007) 2319–2364.
- P. Verlicchi, M. Al Aukidy, E. Zambello, Occurrence of pharmaceutical
compounds in urban wastewater: removal, mass
load and environmental risk after a secondary treatment-a
review, Sci. Total Environ., 429 (2012) 123–155.
- A.R. Khataee, M. Fathinia, S.W. Joo, Simultaneous monitoring
of photocatalysis of three pharmaceuticals by immobilized
TiO2 nanoparticles: chemometric assessment, intermediates
identification and ecotoxicological evaluation, Spectrochim.
Acta Part A: Mol. Biomol. Spectrosc., 112 (2013) 33–45.
- D. Nasuhoglu, A. Rodayan, D. Berk, V. Yargeau, Removal of the
antibiotic levofloxacin (levo) in water by ozonation and TiO2
photocatalysis, Chem. Eng. J., 189-190 (2012) 41–46.
- M.A. Hassan, M.S. Salem, M.S. Sueliman, N.M. Najib, Characterization
of Famotidine polymorphic forms, Int. J. Pharm., 149
(1997) 227–232.
- F.M. Mady, A.E. Abou-Taleb, K.A. Khaled, K. Yamasaki, D. Iohara,
K. Taguchi, M. Anraku, F. Hirayama, K. Uekama, M. Otagiri,
Evaluation of carboxymethyl-beta-cyclodextrin with acid function:
improvement of chemical stability, oral bioavailability and
bitter taste of Famotidine, Int. J. Pharm., 397 (2010) 1–8.
- J.C. Breitner, K.A. Welsh, M.J. Helms, P.C. Gaskell, B.A. Gau,
A.D. Roses, M.A. Pericak-Vance, A.M. Saunders, Delayed onset
of Alzheimer’s disease with nonsteroidal anti-inflammatory
and histamine H2 blocking drugs, Neurobiol. Aging, 16 (1995)
523–527.
- S.P. Molinary, R. aminski, A.D. Rocco, M.D. Yahr, The use of
Famotidine in treatment of Parkinson’s disease: a pilot study,
J. Neural Transm., 9 (1995) 243–248.
- K.W. Lee, S.R. Kayser, R.H. Hongo, Z.H. Tseng, M.M. Scheinman,
Famotidine and long QT syndrome, Am. J. Cardiol., 93
(2004) 1325–1327.
- S. Murphy, C. Saurel, A. Morrissey, J. Tobin, M. Oelgemoller, K.
Nolan, Photocatalytic activity of a porphyrin/TiO2 composite
in the degradation of pharmaceuticals, Appl. Catal. B: Environ.,
119–120 (2012) 156–165.
- J. Karpińska, A. Sokoł, M. Kobeszko, B. Starczewska, U. Czyzewska,
M. Hryniewicka, Study on degradation process of
Famotidine hydrochloride in aqueous samples, Toxicol. Environ.
Chem., 92 (2010) 1409–1422.
- W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, A.R. Mohamed, Highly
reactive {001} facets of TiO2-based composites: synthesis, formation
mechanism and characterization, Nanoscale, 6 (2014)
1946−2008.
- S. Liu, J. Yu, M. Jaroniec, Anatase TiO2 with dominant high-energy
{001} facets: synthesis, properties, and applications,
Chem. Mater., 23 (2011) 4085−4093.
- C. Hua, X. Dong, X. Wang, M. Xue, X. Zhang, H. Ma, Enhanced
photocatalytic activity of W-doped and W-La-codoped TiO2
nanomaterials under simulated sunlight, J. Nanomater.,
(2014) 10.
- M. Ni, M.K.H. Leung, D.Y.C. Leung, L.K. Samathy, A review
and recent developments in photocatalytic water-splitting
using TiO2 for hydrogen production, Renew. Sustain. Energy
Rev., 11 (2007) 401−425.
- R.J. Ellingson, J.B. Asbury, S. Ferrere, H.N. Ghosh, J.R. Sprague,
T. Lian, A.J. Nozik, Dynamics of electron injection in nanocrystalline
titanium dioxide films sensitized with [Ru(4, 4'-dicarboxy-2, 2'-bipyridine)2(NCS)2] by infrared transient
absorption, J. Phys. Chem., B 102 (1998) 6455−6458.
- G. Elena, Linkers for anchoring sensitizers to semiconductor
nanoparticles, Coord. Chem. Rev., 248 (2004) 1283−1297.
- M. Gratzel, Solar energy conversion by dye-sensitized photovoltaic
cells, Inorg. Chem., 44 (2005) 6841−6851.
- W.R. Duncan, O.V. Prezhdo, Theoretical studies of photo
induced electron transfer in dye-sensitized TiO2, Annu. Rev.
Phys. Chem., 58 (2007) 143−184.
- W. Kim, T. Tachikawa, T. Majima, W. Choi, Photocatalysis of
dye-sensitized TiO2 nanoparticles with thin overcoat of Al2O3:
enhanced activity for H2 production and dechlorination of
CCl4, J. Phys. Chem., C 113 (2009) 10603−10609.
- D. Chatterjee, S. Dasgupta, N.N. Rao, Visible light assisted
photodegradation of halocarbons on the dye modified TiO2
surface using visible light, Sol. Energy Mater. Sol. Cells, 90
(2006) 1013−1020.
- P. Chowdhury, J. Moreira, H. Gomaa, A.K. Ray,Visible-solar-light-driven photocatalytic degradation of phenol with
dye-sensitized TiO2: parametric and kinetic study, Ind. Eng.
Chem. Res., 51 (2012) 4523–4532.
- G. Xing, C. Tang, B. Zhang, L. Zhao, Y. Su, X. Wang, A highly
uniform ZnO/NaTaO3 nanocomposite: enhanced self-sensitized
degradation of colored pollutants under visible light, J.
Alloy Compd., 647 (2015) 287–294.
- H. Katsumata, M. Taniguchi, S. Kaneco, T. Suzuki, Photocatalytic
degradation of bisphenol A by Ag3PO4 under visible light,
Catal. Commun., 34 (2013) 30−34.
- J. Su, L. Zhu, P. Geng, G. Chen, Self-assembly graphitic carbon
nitride quantum dots anchored on TiO2 nanotube arrays: An
efficient heterojunction for pollutants degradation under solar
light, J. Hazard. Mater., 316 (2016) 159–168.
- P. Kubelka, F. Munk, Ein Beitrag Zur Optik Der Farbanstriche,
Z. Techn. Phys., 12 (1931) 593−601.
- G. Naresh, T.K. Mandal, Excellent sun-light-driven photocatalytic
activity by aurivillius layered perovskites, Bi5−xLaxTi3FeO15 (x = 1, 2), ACS Appl. Mater. Interfaces, 6 (2014)
21000−21010.
- C.S. Turchi, D.F. Ollis, Photocatalytic degradation of organic
water contaminants: mechanisms involving hydroxyl radical
attack, J. Catal., 122 (1990) 178−192.
- S. Kumar, T. Surendar, A. Baruah, V. Shanker, Synthesis of
a novel and stable g-C3N4−Ag3PO4 hybrid nanocomposite
photo catalyst and study of the photocatalytic activity under
visible light irradiation, J. Mater. Chem., A 1 (2013) 5333−5340.
- H.X. Li, Z.F. Bian, J. Zhu, Y.N. Huo, H. Li, Y.F. Lu, Mesoporous
Au/TiO2 nanocomposites with enhanced photocatalytic activity,
J. Am. Chem. Soc., 129 (2007) 4538–4539.
- V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi
level equilibration, J. Am. Chem. Soc., 126 (2004) 4943–4950.
- S. Bassaid, B. Bellal, M. Trari, Photocatalytic degradation of
orange II on the novel hetero-system WS2/TiO2 under UV light,
Reac. Kinet. Mech. Cat., 115 (2015) 389–400.
- P. Ren, Y. Li, Y. Zhang, H. Wang, Q. Wang, Photoelectric properties
of DSSCs sensitized by phloxine B and bromophenol
blue, Int. J. Photoenergy 2016, (2016) 11 pages.
- X.F. Sun, B.B. Guo, L. He, P.F. Xia, S.G. Wang, Electrically accelerated
removal of organic pollutants by a three-dimensional
graphene aerogel, Am. Int. Chem. Eng., 62 (2016) 2154−2162.
- A.J. Nozik, R. Memming, Physical chemistry of semiconductor-
liquid interfaces, J. Phys. Chem., 100 (1996) 13061–13078.
- L. Pan, J. Zou, X. Liu, X. Liu, S. Wang, X. Zhang, L. Wang,
Visible-light-induced photodegradation of rhodamine B over
hierarchical TiO2: effects of storage period and water-mediated
adsorption switch, Ind. Eng. Chem. Res., 51 (2012) 12782−12786.
- Y. Su, L. Peng, J. Guo, S. Huang, L. Lv, X. Wang, Tunable optical
and photocatalytic performance promoted by nonstoichiometric
control and site-selective codoping of trivalent ions in
NaTaO3, J. Phys. Chem., C118 (2014) 10728−10739.
- A. Fujishima, T.N. Tao, D.A. Tryk, Titanium dioxide photocatalysis,
J. Photochem. Photobiol. C: Photochem. Rev., 1 (2000)
1−21.
- W.J. Kima, D. Pradhanb, B.-K. Minc, Y.Sohna, Adsorption/
photocatalytic activity and fundamental natures of BiOCl and
BiOClxI1−x prepared in water and ethylene glycol environments,
and Ag and Au-doping effects, Appl. Catal. B: Environ., 147
(2014) 711–725.
- S. Murphy, C. Saurel, A. Morrissey, J. Tobin, M. Oelgemoller, K.
Nolan, Photocatalytic activity of a porphyrin/TiO2 composite
in the degradation of pharmaceuticals, Appl. Catal. B: Environ.,
119–120 (2012) 156–165.