References

  1. P.K. Geol, Water Pollution: Causes, Effects and Control, 2nd ed., New Delhi: New Age International, 2006.
  2. M. Brigante, P.C. Schulz, Remotion of the antibiotic TC by titania and titania-silica composed materials, J. Hazard. Mater., 192 (2011) 1597–1608.
  3. K.J. Choi, S.G. Kim, S.H. Kim, Removal of tetracycline and sulfonamide classes of antibiotic compound by powdered activated carbon, Environ. Technol., 29(3) (2008) 333–342.
  4. L. Zhang, X. Song, X. Liu, L. Yang, F. Pan, J. Lv, Studies on the removal of TC by multi-walled carbon nanotubes, Chem. Eng. J., 178 (2011) 26–33.
  5. J.C. Chee-Sanford, R.I. Aminov, I.J. Krapac, N. Garrigues-Jeanjean, R.I. Mackie, Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities, Appl. Environ. Microbiol., 67 (2001) 1494–1502.
  6. E. Zuccato, R. Bagnati, F. Fioretti, M. Natangelo, D. Calamari, R. Fanelli, Environmental loads and detection of pharmaceuticals in Italy, in: K. Kummerer (ed.), Pharmaceuticals in the Environment. Sources, Fate, Effects and Risks, Springer-Verlag, Berlin, Heidelberg, 2001.
  7. A. Bruchet, C. Prompsy, G. Fillppi, A. Soual, A broad spectrum analytical scheme for the screening of endocrine disruptors (EDs), pharmaceuticals and personal care products in wastewaters and natural waters, Water Sci. Technol., 46 (2002) 97–104.
  8. D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.S.D. Zaugg, L.B. Barber, H.T. Buxton, Pharmaceuticals, hormones and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance, Environ. Sci. Technol., 36 (2002) 1202–1211.
  9. M. Ghaemi, G. Absalan, Fast removal and determination of doxycycline in water samples and honey by Fe3O4 magnetic nanoparticles, J. Iranian Chem. Soc., 12(1) (2015) 1–7.
  10. S. Boleas, C. Alonso, J. Pro, C. Fernández, G. Carbonell, J.V. Tarazona, Toxicity of the antimicrobial oxytetracycline to soil organisms in a multi-species-soil system (MS· 3) and influence of manure co-addition, J. Hazard. Mater., 122 (2005) 233–241.
  11. S. Thiele-Bruhn, I.-C. Beck, Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass, Chemosphere, 59 (2005) 457–465.
  12. B. Halling-Sørensen, Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents, Arch. Environ. Contam. Toxicol., 40 (2001) 451–460.
  13. K. Kümmerer, Significance of antibiotics in the environment, J. Antimicrob. Chemother., 52 (2003) 5–7.
  14. V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices–a review, J. Environ. Manage., 92 (2011) 2304–2347.
  15. T. Sismanoglu, Y. Kismir, S. Karakus, Single and binary adsorption of reactive dyes from aqueous solutions onto clinoptilolite, J. Hazard. Mater., 184 (2010) 164–169.
  16. M. Bazregari, N. Farhadian, Modification the surface of MWCNT for improvement the amoxicilline removal from aqueous environment, MSc. Thesis, Ferdowsi University of Mashhad, Iran, 2015.
  17. D. Zhang, N. Hongyun, X. Zhang, Z. Meng, Y. Cai, Strong adsorption of chlorotetracycline on magnetite nanoparticles, J. Hazard. Mater., 192 (2011) 1088–1093.
  18. S. Shi, Y. Fan, Y. Huang, Facile low temperature hydrothermal synthesis of magnetic mesoporous carbon nanocomposite for adsorption removal of ciprofloxacin antibiotics, Ind. Eng. Chem. Res., 52 (2013) 2604–2612.
  19. Q. Jiuhui, Research progress of novel adsorption processes in water purification: A review, J. Environ. Sci., 20 (2008) 1–13.
  20. B. Kakavandi, A. Esrafili, A. Mohseni-Bandpi, A. Jonidi Jafari R. Rezaei Kalantary, Magnetic Fe3O4@C nanoparticles as adsorbents for removal of amoxicillin from aqueous solution, Water Sci. Technol., 69 (2014) 147–155.
  21. J. Shi, L. Tong, D. Liu, H. Yang, Fabrication, structure, and properties of Fe3O4@ C encapsulated with YVO4: Eu3+ composites, Nanoparticle Res., 14 (2012) 1–9.
  22. A.L. Andrade, D.M. Souza, M.C. Pereira, J.D. Fabris, R.Z. Domingues, Synthesis and characterization of magnetic nanoparticles coated with silica through a sol-gel approach, Cerâmica, 55 (2009) 420–424.
  23. L. Xu, J. Dai, J. Pan, X. Li, P. Huo, Y. Yan, X. Zou, R. Zhang, Performance of rattle-type magnetic mesoporous silica spheres in the adsorption of single and binary antibiotics, Chem. Eng. J., 174 (2011) 221–230.
  24. S.L.C. Pinho, G.A. Pereira, P. Voisin, J. Kassem, V. Bouchaud, L. Etienne, J.A. Peters, L. Carlos, S. Mornet, G.F.G.C. Geraldes, J. Rocha, M.H. Delville, Fine tuning of the relaxometry of _-Fe2O3@SiO2 nanoparticles by tweaking the silica coating thickness, ACS Nano, 4 (2010) 5339–5349.
  25. M.J. Ding, X.L. Wu, L.H. Yuan, S. Wang, Y. Li, R.Y. Wang, T.T. Wen, S.H. Du, X.M. Zhou, Synthesis of core–shell magnetic molecularly imprinted polymers and detection of sildenafil and vardenafil in herbal dietary supplements, J. Hazard. Mater., 191 (2011) 177–183.
  26. H.M. Joshi, M. De, F. Richter, J. He, P.V. Prasad, V.P. Dravid, Effect of silica shell thickness of Fe3O4–SiOx core–shell nanostructures on MRI contrast, Contrast Media Mol. Imaging, 7 (2012) 460–468.
  27. Sh. Guo, D. Li, L. Zhang, J. Li, E. Wang, Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery, Biomater., 30 (2009) 1881–1889.
  28. F. Liu, H. Tian, J. He, H. Liu, Efficient control over the pore structure of Fe3O4-nSiO2-mSiO2 core–shell nanoparticles, Int. J. Nanosci., 11 (2012) 1240031.
  29. H. Pouretedal, N. Sadegh, Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood, J. Water Process Eng., 1 (2014) 64–73.
  30. M.E. Parolo, M.C. Savini, J.M. Vales, M.T. Baschini, M.J. Avena, Tetracycline adsorption on montmorillonite: pH and ionic strength effects, Appl. Clay Sci., 40 (2008) 179–186.
  31. L.X. Zhou, S.D. Pan, X.H. Chen, Y.G. Zhao, B.B. Zou, M.C. Jin., Kinetics and thermodynamics studies of pentachlorophenol adsorption on covalently functionalized Fe3O4@SiO2–MWCNTs core–shell magnetic microspheres, Chem. Eng. J., 257 (2014) 10–19.
  32. S. Wu, X. Zhao, Y. Li, Q. Du, J. Sun, Y. Wang, X. Wang, Y. Xia, Z. Wang, L. Xia, Adsorption properties of doxorubicin hydrochloride onto graphene oxide: equilibrium, kinetic and thermodynamic studies, Materials, 6 (2013) 2026–2042.
  33. F. Ahangaran, A. Hassanzadeh, S. Nouri, Surface modification of Fe3O4@ SiO2 microsphere by silane coupling agent, Int. Nano Lett., 3(1) (2013) 23.
  34. B. Sahoo, K. Sanjana, P. Devi, S. Kumar Sahu, Facile preparation of multifunctional hollow silica nanoparticles and their cancer specific targeting effect, Biomater. Sci., 1(6) (2013) 647–657.
  35. M. Zhang, A. Li, Q. Zhou, C. Shuang, W. Zhou, M. Wang, Effect of pore size distribution on tetracycline adsorption using magnetic hypercrosslinked resins, Micropor. Mesopor. Mater., 184 (2014) 105–111.
  36. J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu, D. Zhu, Amino-functionalized Fe3O4@ SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal, J. Colloid Interface Sci, 349(1) (2010) 293–299.
  37. S. Wang, J. Tang, H. Zhao, J. Wan, K. Chen, Synthesis of magnetite–silica core–shell nanoparticles via direct silicon oxidation, J. Colloid Interface Sci., 432 (2014) 43–46.
  38. X.-R. Xu, X.-Y. Li, Sorption and desorption of antibiotic tetracycline on marine sediments, Chemosphere, 78(4) (2010) 430– 436.
  39. U.A. Guler, M. Sarioglu, Removal of tetracycline from wastewater using pumice stone: equilibrium, kinetic and thermodynamic studies, J. Environ. Health Sci. Eng., 12(1) (2014) 79.
  40. J. Dai, J. Pan, L. Xu, X. Li, Z. Zhoe, R. Zhang, Y. Yan, Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium, J. Hazard. Mater., 205 (2012) 179–188.
  41. S. MehradFard, N. Farhadian, T. Rohani-Bastami, M. Ebrahimi, M. Karimi, A. Allahyari, Synthesis, characterization and cellular cytotoxicity evaluation of a new magnetic nanoparticle carrier co-functionalized with amine and folic acid, J. Drug Deliv. Sci. Technol., 38 (2017) 116–124.
  42. R.A. Figueroa, A. Leonard, A.A. MacKay, Modeling tetracycline antibiotic sorption to clays, Environ. Sci. Technol., 38(2) (2004) 476–483.
  43. L. Ji, W. Chen, S. Zheng, Z. Xu, D. Zhu, Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes, Langmuir, 25(19) (2009) 11608–11613.
  44. Y. Lin, S. Xu, J. Li, Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles, Chem. Eng. J., 225 (2013) 679–685.
  45. Z. Li, L. Schulz, C. Ackley, N. Fenske, Adsorption of tetracycline on kaolinite with pH-dependent surface charges, J. Colloid. Interf. Sci., 351(1) (2010) 254–260.