References
- S. Venkatesan, K.M.M.S. Begum, Removal of copper and zinc
from aqueous solutions and industrial effluents using emulsion
liquid membrane technique, Asia Pac. J. Chem. Eng., 3
(2001) 387–399.
- H. Sverdrup, K.V. Ragnarsdottir, D. Koca, On modelling the
global copper mining rates, market supply, copper price and
the end of copper reserves, Resour. Conserv. Recy., 87 (2014)
158–174.
- J.H.M. Harmsen, A.L. Roes, M.K. Patel, The impact of copper
scarcity on the efficiency of 2050 global renewable energy scenarios,
Energy, 50 (2013) 62–73.
- M.R. Awual, T. Yaita, S.A. El-Safty, H. Shiwaku, S. Suzuki, Y.
Okamoto, Copper(II) ions capturing from water using ligand
modified a new type mesoporous adsorbent, Chem. Eng. J., 221
(2013) 322–330.
- M.A. Tofighy, T. Mohammadi, Copper ions removal from water
using functionalized carbon nanotubes–mullite composite as
adsorbent, Mater. Res. Bull., 68 (2015) 54–59.
- C.A. Flemming, J.T. Trevors, Copper toxicity and chemistry
in the environment: a review, Water Air Soil Poll., 44 (1989)
143–158.
- G. Crisponi, V.M. Nurchi, D. Fanni, C. Gerosa, S. Nemolato,
G. Faa, Copper-related diseases: from chemistry to molecular
pathology, Coord. Chem. Rev., 254 (2010) 876–889.
- World Health Organization. Geneva. Guidelines for Drinking
Water Quality, 1984.
- US Environmental Protection Agency. Ambient water quality
criteria document: copper. EPA 440y5-84-031.Office of Regulations
and Standards, Criteria and Standards Division, Washington,
DC, 1985.
- W. Djoudi, F. Aissani-Benissad, S. Bourouina-Bacha, Optimization
of copper cementation by iron using central composite
design experiments, Chem. Eng. J., 133 (2007) 1–6.
- O.N. Tiwari, M. Pradhan, T. Nandy, Treatment of mining-influenced
water at Malanjkhand copper mine, Desal. Wat. Treat.,
57 (2016) 24755–24764.
- M.A.A. Zaini, M.A.C. Yunus, S.H.M. Setapar, Y. Amano, M.
Machida, Effect of heat treatment on copper removal onto
manure compost-activated carbons, Desal. Wat. Treat., 51
(2013) 5608–5616.
- S.A.R. Shahamirifard, M. Ghaedi, M.R. Rahimi, S. Hajati, M.
Montazerozohori, M. Soylak, Simultaneous extraction and
preconcentration of Cu2+, Ni2+ and Zn2+ ions using Ag nanoparticle-
loaded activated carbon: Response surface methodology,
Adv. Powder Technol., 27 (2016) 426–435.
- J. Gao, Y. He, X. Zhao, X. Ran, Y. Wu, Y. Su, J. Dai, Single step
synthesis of amine functionalized mesoporous magnetite
nanoparticles and their application for copper removal from
aqueous solutions, J. Colloid Interf. Sci., 481 (2016) 220–228.
- A. Ghosh, K. Sinha, P.D. Saha, Central composite design optimization
and artificial neural network modelling of copper
removal by chemically modified orange peel, Desal. Wat.
Treat., 51 (2013) 7791–7799.
- S. Ben-Ali, I. Jaouali, S. Souissi-Najar, A. Ouederni, Characterization
and adsorption capacity of raw pomegranate peel
biosorbent form copper removal, J. Clean. Product., 142 (2017)
3809–3821.
- R.N. Ntimbani, G.S. Simate, S. Ndlovu, Removal of copper
ions from dilute synthetic solution using staple ion exchange
fibres: Equilibrium and kinetic studies, J. Environ. Chem. Eng.,
3 (2015) 1258–1266.
- F.H. Wang, Y.X. Ji, J.J. Wang, Synthesis of heavy
metal chelating agent with four chelating groups of
N1,N2,N4,N5-tetrakis(2-mercaptoethyl)benzene-1,2,4,5-tetracarboxamide
(TMBTCA) and its application for Cu-containing
wastewater, J. Hazard. Mater., 241–242 (2012) 427–432.
- F. Akbal, S. Camc, Copper, chromium and nickel removal from
metal plating wastewater by electrocoagulation, Desalination,
269 (2011) 214–222.
- T. Mohammadi, A. Moheb, M. Sadrzadeh, A. Razmi, Separation
of copper ions by electrodialysis using Taguchi experimental
design, Desalination, 169 (2004) 21–31.
- X. Wang, Z. Wang, H. Chen, Z. Wu, Removal of Cu(II) ions
from contaminated waters using a conducting microfiltration
membrane, J. Hazard. Mater., 339 (2017) 182–190.
- M.A. Barakat, E. Schmidt, Polymer-enhanced ultrafiltration
process for heavy metals removal from industrial wastewater,
Desalination, 256 (2010) 90–93.
- C. Magnenet, F.E. Jurin, S. Lakard, C.C. Buron, B. Lakard,
Polyelectrolyte modification of ultrafiltration membrane for
removal of copper ions, Colloid Surface A, 435 (2013) 170–177.
- A.L. Ahmad, B.S. Ooi, A study on acid reclamation and copper
recovery using low pressure nanofiltration membrane, Chem.
Eng. J., 156 (2010) 257–263.
- E. Cséfalvay, V. Pauer, P. Mizsey, Recovery of copper from process
water by nanofiltration and reverse osmosis, Desalination,
240 (2009) 132–42.
- J. Rodrigues, F. Merçon, C.M. Guimarães, D. Radoman, Application
of reverse osmosis process associated with EDTA complexation
for nickel and copper removal from wastewater,
Desal. Wat. Treat., 57 (2016) 19466–19474.
- H. Zheng, J. Chen, B. Wang, S. Zhao, Recovery of Copper ions
from wastewater by hollow fiber supported emulsion liquid
membrane, Chin. J. Chem. Eng., 21 (2013) 827–834.
- J. Castillo, M.T. Coll, A. Fortuny, P. Navarro, R. Sepúlveda,
A.M. Sastre, Cu(II) extraction using quaternary ammonium
and quaternary phosphonium based ionic liquid, Hydrometallurgy,
141 (2014) 89–96.
- Y. Huang, D. Wu, X. Wang, W. Huang, D. Lawless, X. Feng,
Removal of heavy metals from water using polyvinylamine by
polymer-enhanced ultrafiltration and flocculation, Sep. Purif.
Technol., 158 (2016) 124–136.
- S.A. Al-Saydeha, M.H. El-Naasa, S.J. Zaidib, Copper removal
from industrial wastewater: A comprehensive review, J. Ind.
Eng. Chem., (2017) published online, https://doi.org/10.1016/j.
jiec.2017.07.026.
- A.M. Sastre, A. Kumar, J.P. Shukla, R.K. Singh, Improved techniques
in liquid membrane separations: an overview, Sep.
Purif. Meth., 27 (1998) 213–298.
- G. León, M.A. Guzmán, Facilitated transport of valine through
bulk liquid membranes containing Aliquat 336: A kinetic
study, Desal. Wat. Treat., 27 (2011) 114–119.
- G. León, Facilitated transport. In: E. Drioli, L. Giorno, Encyclopedia
of Membranes, Springer-Verlag Heidelberg 2016, pp.
763–764.
- J. Gyves, E. Rodríguez, Metal ion separations by supported liquid
membranes, Ind. Eng. Chem. Res., 38 (1999) 2182–2202.
- L. León, G. León, J. Senent, M.A. Guzmán, Comparative study
of copper (II) removal/recovery from aqueous solutions by
bulk liquid membranes containing six different carriers, Metalurgija,
56 (2017) 153–156.
- G. Muthuraman, K. Palanivelu, Transport of textile dye in vegetable
oils based supported liquid membrane, Dyes and Pigments,
70 (2006) 99–104.
- M. Hor, A. Riad, A. Benijar, L. Lebrum, M. Hlaïbi, Technique of
supported liquid membranes (SLMs) for the facilitated transport
of vanadium ions (VO2+). Parameters and mechanism on
the transport, Desalination, 255 (2010) 188–195.
- H.K. Alpoguz, S. Memon, M. Ersoz, M. Yilmaz, Transport of
Hg2+ ions across a supported liquid membrane containing
calix[4]arene nitriled derivatives as a specific ion carrier, Sep.
Sci. Technol., 40 (2005) 2365–2372.