References

  1. S. Venkatesan, K.M.M.S. Begum, Removal of copper and zinc from aqueous solutions and industrial effluents using emulsion liquid membrane technique, Asia Pac. J. Chem. Eng., 3 (2001) 387–399.
  2. H. Sverdrup, K.V. Ragnarsdottir, D. Koca, On modelling the global copper mining rates, market supply, copper price and the end of copper reserves, Resour. Conserv. Recy., 87 (2014) 158–174.
  3. J.H.M. Harmsen, A.L. Roes, M.K. Patel, The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios, Energy, 50 (2013) 62–73.
  4. M.R. Awual, T. Yaita, S.A. El-Safty, H. Shiwaku, S. Suzuki, Y. Okamoto, Copper(II) ions capturing from water using ligand modified a new type mesoporous adsorbent, Chem. Eng. J., 221 (2013) 322–330.
  5. M.A. Tofighy, T. Mohammadi, Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent, Mater. Res. Bull., 68 (2015) 54–59.
  6. C.A. Flemming, J.T. Trevors, Copper toxicity and chemistry in the environment: a review, Water Air Soil Poll., 44 (1989) 143–158.
  7. G. Crisponi, V.M. Nurchi, D. Fanni, C. Gerosa, S. Nemolato, G. Faa, Copper-related diseases: from chemistry to molecular pathology, Coord. Chem. Rev., 254 (2010) 876–889.
  8. World Health Organization. Geneva. Guidelines for Drinking Water Quality, 1984.
  9. US Environmental Protection Agency. Ambient water quality criteria document: copper. EPA 440y5-84-031.Office of Regulations and Standards, Criteria and Standards Division, Washington, DC, 1985.
  10. W. Djoudi, F. Aissani-Benissad, S. Bourouina-Bacha, Optimization of copper cementation by iron using central composite design experiments, Chem. Eng. J., 133 (2007) 1–6.
  11. O.N. Tiwari, M. Pradhan, T. Nandy, Treatment of mining-influenced water at Malanjkhand copper mine, Desal. Wat. Treat., 57 (2016) 24755–24764.
  12. M.A.A. Zaini, M.A.C. Yunus, S.H.M. Setapar, Y. Amano, M. Machida, Effect of heat treatment on copper removal onto manure compost-activated carbons, Desal. Wat. Treat., 51 (2013) 5608–5616.
  13. S.A.R. Shahamirifard, M. Ghaedi, M.R. Rahimi, S. Hajati, M. Montazerozohori, M. Soylak, Simultaneous extraction and preconcentration of Cu2+, Ni2+ and Zn2+ ions using Ag nanoparticle- loaded activated carbon: Response surface methodology, Adv. Powder Technol., 27 (2016) 426–435.
  14. J. Gao, Y. He, X. Zhao, X. Ran, Y. Wu, Y. Su, J. Dai, Single step synthesis of amine functionalized mesoporous magnetite nanoparticles and their application for copper removal from aqueous solutions, J. Colloid Interf. Sci., 481 (2016) 220–228.
  15. A. Ghosh, K. Sinha, P.D. Saha, Central composite design optimization and artificial neural network modelling of copper removal by chemically modified orange peel, Desal. Wat. Treat., 51 (2013) 7791–7799.
  16. S. Ben-Ali, I. Jaouali, S. Souissi-Najar, A. Ouederni, Characterization and adsorption capacity of raw pomegranate peel biosorbent form copper removal, J. Clean. Product., 142 (2017) 3809–3821.
  17. R.N. Ntimbani, G.S. Simate, S. Ndlovu, Removal of copper ions from dilute synthetic solution using staple ion exchange fibres: Equilibrium and kinetic studies, J. Environ. Chem. Eng., 3 (2015) 1258–1266.
  18. F.H. Wang, Y.X. Ji, J.J. Wang, Synthesis of heavy metal chelating agent with four chelating groups of N1,N2,N4,N5-tetrakis(2-mercaptoethyl)benzene-1,2,4,5-tetracarboxamide (TMBTCA) and its application for Cu-containing wastewater, J. Hazard. Mater., 241–242 (2012) 427–432.
  19. F. Akbal, S. Camc, Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation, Desalination, 269 (2011) 214–222.
  20. T. Mohammadi, A. Moheb, M. Sadrzadeh, A. Razmi, Separation of copper ions by electrodialysis using Taguchi experimental design, Desalination, 169 (2004) 21–31.
  21. X. Wang, Z. Wang, H. Chen, Z. Wu, Removal of Cu(II) ions from contaminated waters using a conducting microfiltration membrane, J. Hazard. Mater., 339 (2017) 182–190.
  22. M.A. Barakat, E. Schmidt, Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater, Desalination, 256 (2010) 90–93.
  23. C. Magnenet, F.E. Jurin, S. Lakard, C.C. Buron, B. Lakard, Polyelectrolyte modification of ultrafiltration membrane for removal of copper ions, Colloid Surface A, 435 (2013) 170–177.
  24. A.L. Ahmad, B.S. Ooi, A study on acid reclamation and copper recovery using low pressure nanofiltration membrane, Chem. Eng. J., 156 (2010) 257–263.
  25. E. Cséfalvay, V. Pauer, P. Mizsey, Recovery of copper from process water by nanofiltration and reverse osmosis, Desalination, 240 (2009) 132–42.
  26. J. Rodrigues, F. Merçon, C.M. Guimarães, D. Radoman, Application of reverse osmosis process associated with EDTA complexation for nickel and copper removal from wastewater, Desal. Wat. Treat., 57 (2016) 19466–19474.
  27. H. Zheng, J. Chen, B. Wang, S. Zhao, Recovery of Copper ions from wastewater by hollow fiber supported emulsion liquid membrane, Chin. J. Chem. Eng., 21 (2013) 827–834.
  28. J. Castillo, M.T. Coll, A. Fortuny, P. Navarro, R. Sepúlveda, A.M. Sastre, Cu(II) extraction using quaternary ammonium and quaternary phosphonium based ionic liquid, Hydrometallurgy, 141 (2014) 89–96.
  29. Y. Huang, D. Wu, X. Wang, W. Huang, D. Lawless, X. Feng, Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafiltration and flocculation, Sep. Purif. Technol., 158 (2016) 124–136.
  30. S.A. Al-Saydeha, M.H. El-Naasa, S.J. Zaidib, Copper removal from industrial wastewater: A comprehensive review, J. Ind. Eng. Chem., (2017) published online, https://doi.org/10.1016/j. jiec.2017.07.026.
  31. A.M. Sastre, A. Kumar, J.P. Shukla, R.K. Singh, Improved techniques in liquid membrane separations: an overview, Sep. Purif. Meth., 27 (1998) 213–298.
  32. G. León, M.A. Guzmán, Facilitated transport of valine through bulk liquid membranes containing Aliquat 336: A kinetic study, Desal. Wat. Treat., 27 (2011) 114–119.
  33. G. León, Facilitated transport. In: E. Drioli, L. Giorno, Encyclopedia of Membranes, Springer-Verlag Heidelberg 2016, pp. 763–764.
  34. J. Gyves, E. Rodríguez, Metal ion separations by supported liquid membranes, Ind. Eng. Chem. Res., 38 (1999) 2182–2202.
  35. L. León, G. León, J. Senent, M.A. Guzmán, Comparative study of copper (II) removal/recovery from aqueous solutions by bulk liquid membranes containing six different carriers, Metalurgija, 56 (2017) 153–156.
  36. G. Muthuraman, K. Palanivelu, Transport of textile dye in vegetable oils based supported liquid membrane, Dyes and Pigments, 70 (2006) 99–104.
  37. M. Hor, A. Riad, A. Benijar, L. Lebrum, M. Hlaïbi, Technique of supported liquid membranes (SLMs) for the facilitated transport of vanadium ions (VO2+). Parameters and mechanism on the transport, Desalination, 255 (2010) 188–195.
  38. H.K. Alpoguz, S. Memon, M. Ersoz, M. Yilmaz, Transport of Hg2+ ions across a supported liquid membrane containing calix[4]arene nitriled derivatives as a specific ion carrier, Sep. Sci. Technol., 40 (2005) 2365–2372.