References
- H.G. Seiler, A. Sigel, H. Sigel, Handbook on Toxicity of Inorganic
Compounds, Marcel-Dekker, New York, 1998.
- M. Mukhopadhyay, S.B. Noronha, G.K. Suraishkumar, Kinetic
modeling for the bioadsorption of copper by pretreated Aspergillus
niger biomass, Bioresour. Technol., 98 (2007) 1781–1787.
- J.W. Patterson, Industrial wastewater treatment technology, 2nd
ed., Stoneham, MA: Butterworths Publishers, 1985.
- R. Gundogan, B. Acemioglu, M.H. Alma, Copper (II) adsorption
from aqueous solution by herbaceous peat, J. Colloid
Interf. Sci., 269 (2004) 303–309.
- P. Cloud, Paleoecological significance of the banded iron formation,
Econ. Geol., 68 (1973) 1135–1143.
- Jr. M. Horsfall, I. Ayebaemi, A.A. Abi, Studies on the influence
of mercaptoacetic acid (MAA) modification of cassava (Manihot
Sculenta Cranz) waste biomass on the adsorption of Cu2+
and Cd2+ from aqueous solution, Bullet. of the Korean Chem.
Soci., 25 (2004) 969–976.
- D.G. Lundgren, W. Dean, Biogeochemistry of iron, In:
Trudinger, P.A., Swaine, D.J. (eds.), Biogeochemical Cycling of
Mineral-Forming Elements, Sci. Publ. Comp., 1979, pp. 211–251.
- D.E. Weiss, Bacterial iron oxidation in circumneutral freshwater
habitats: findings from the field and the laboratory, Geomicrobi.
J., 21 (2004) 405–414.
- R. Katal, H. Zare, S.O. Rastegar, P. Mavaddat, G.N. Darzi,
Removal of dye and chemical oxygen demand reduction from
textile industrial wastewater using hybrid bioreactors, Environ.
Eng. Manag. J., 13 (2014) 43–50.
- J.A. Rentz, J.L. Ullman, Copper and zinc removal using biogenic
iron oxides, World Environ. Water Res. Congress: Crossing
Boundaries, 2012.
- A.B. Seabra, P. Haddad, N. Duran, Biogenic synthesis of nanostructured
iron compounds: applications and perspectives,
IET Nanobiotechnol., 7 (2013) 90–99.
- H. Katerina, S. Ivo, F. Jan, N. Maryla, T. Jiri, S. Mirka, H. Hideki,
T. Jun, Z. Radek, Magnetically responsive natural biogenic
iron oxides for organic xenobiotics removal, Nanocon, 16–18
Oct., Brno, Czech Republic, EU, 2013.
- E.O. Omoregie, R.M. Couture, P.V. Cappellen, C.L. Corkhill,
J.M. Charnock, D.A. Polya, D. Vaughan, K. Vanbroekhoven,
J.R. Lloyd, Arsenic bioremediation by biogenic iron oxides
and sulphides, Appl. Environ. Microbiol., 79 (2013) 4325–
4335.
- A.J. Williams, D.Y. Sumner, C.N. Alpers, K.M. Campbell, D.K.
Nordstrom, Biogenic iron mineralization at Iron Mountain, Ca,
with implications for detection with the mars curiosity rover,
45th Lunar and Planetary Science Conference, 2014.
- G.M. Ayoub, H, Kalinian, Removal of low-concentration phosphorus
using a fluidized raw dolomite bed, Water Env. Res., 78
(2006) 353–361.
- H.L. James, P.K. Sims, Precambrian iron-formations of the
world, Econ. Geol., 68 (1973) 913–914.
- L. St-Cyr, D. Fortin, P.G.C. Campbell, Microscopic observations
of the iron plaque of a submerged aquatic plant (Vallisneria
americana Michx), Aquat. Bot., 46 (1993) 155–167.
- D. Emerson, J.V. Weiss, J.P. Megonigal, Iron-oxidizing bacteria
are associated with ferric hydraoxide precipitates (Fe-Plaque)
on the roots of wetland plants, Appl. Environ. Microbiol.,
(1999) 2758–2761.
- S.A. Figueiredo, O. Matos Freitas, Adsorption kinetics of
removal of yellow lanasol dyestuff using gallinaceous feathers,
Environ. Eng. Manage. J., 12 (2013) 2061–2070.
- C.J. Igwe, U. Arukwe, N.S. Anioke, Isotherm and kinetic
studies of residual oil adsorption from palm oil mill effluent
(pome) using boiler fly ash, Environ. Eng. Manage. J., 12
(2013) 417–427.
- J.V. Weiss, Characterization of neutrophilic Fe(II) oxidizing
bacteria isolated from the rhizosphere of wetland plants and
description of Ferritrophicum radicicola gen. nov. sp. nov.,
and Sideroxydans paludicola sp. Nov, Geomicrobi. J., 24 (2007)
559–570.
- S.C. Neubauer, G.E. Toledo-Duran, D. Emerson, Returning to
their roots: iron-oxidizing bacteria enhance short-term plaque
formation in the wetland-plant rhizosphere, Geomicrobiol. J.,
24 (2007) 65–73.
- APHA, Standard Methods for the Examination of Water and
Wastewater. 22rd ed., American Public Health Association,
American Water Works Association, Water Environment
Federation, 2012.
- A. Demirbas, Adsorption of lead and cadmium ions in aqueous
solutions onto modified lignin from alkali glycerol delignication,
J. Hazard. Mater., 109 (2004) 221–226.
- I. Langmuir, The Constitution and fundamental properties of
solids and liquids, Part I, Solids, J. Amer. Chem. Soc., 38 (1916)
2221–2295.
- H.M.F. Fruindlich, Under die adsorption in Losungen, J. Phys.
Chem., 57 (1906) 385–470.
- L. Liu, J. Liu, H. Li, H. Zhang, J. Liu, H. Zhang, Lead biosorption
on sesame leaf, BioResour., 7 (2012) 3555–3572.
- J.A. Rentz, I.P. Turner, J.L. Ullma, Removal of phosphorus
from solution using Leptothrix sp., Water Res., 43 (2009) 2029–
2035.
- C.A. Eligwe, N.B. Okolue, Adsorption of iron (II) by a Nigerian
brown coal, Fuel, 73 (1994) 569–572.
- M.A. Hossain, M. Kumita, Y. Michigami, S. Mori, Kinetics
of Cr(VI) adsorption on used black tea leaves, J. Chem. Eng.
Japan, 38 (2005) 402–406.
- S. Ghorai, A.K. Sarkar, A.B. Pand, S. Pal, Effective removal of
congo red dye from aqueous solution using modified xanthan
gum/silica hybrid nanocomposite as adsorbent, Bioresour.
Technol., 144 (2013) 485–491.
- S. Lagergren, Zur theorie der sogenannten adsorption geloster
stoffe, Kungliga Svenska Vetenskapsakademiens, Handlingar
24 (1898) 1–39.
- M.J.D. Low, Kinetics of chemisorption of gases on solids,
Chem. Rev., 60 (1960) 267–312.
- Y.S. Ho, G. McKay, Application of kinetic models to the sorption
of copper (II) on to peat, Adsorp. Sci.Technol., 20 (2002).
- J.I. Drever, The geochemistry of natural waters, Prentice-Hall,
New Jersey, 1997.
- R.A.K. Rao, S. Ikram, Sorption studies of Cu(II) on gooseberry
fruit (Emblica officinalis) and its removal from electroplating
wastewater, Desalination, 277 (2011) 390–398.
- Y.H. Chen, F.A. Li, Kinetic study on removal of copper(II)
using goethite and hematite nano-photocatalysts, J. Colloid
Interface Sci., 347 (2010) 277–281.
- M.A. Zenasni, S. Benfarhi, A. Merlin, S. Molina, B. George, B.
Meroufel, Adsorption of Cu(II) on maghnite from aqueous
solution: Effects of pH, initial concentration, interaction time
and temperature, Natural Sci., 4 (2012) 856–868.
- H.J. Shipley, K.E. Engates, V.A. Grover, Removal of Pb(II),
Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of
sorbent concentration, pH, temperature, and exhaustion, Environ.
Sci. Pollut. Res., 20 (2013) 1727–1736.
- N. Sezgin, M. Sahin, A. Yalcin, Y. Koseoglu, Synthesis characterization
and the heavy metal removal efficiency of MFe2O4
(M=Ni, Cu) Nanoparticles, Ekoloji, 22 (2013) 89–96.
- K.A. Al-Saad, M.A. Amr, D.T. Hadi, R.S. Arar, M.M. AL-Sulaiti,
T.A. Abdulmalik, N.M. Alsahamary, J.C. Kwak, Iron oxide
nanoparticles: applicability for heavy metal removal from contaminated
water, Arab J. Nucl. Sci. Appl., 45 (2012) 335–346.
- A.M. Farhan, A.H. Al-Dujaili, A.M. Awwad, Equilibrium and
kinetic studies of cadmium(II) and lead(II) ions biosorption
onto Ficus carcia leaves, Int. J. Ind. Chem. 4 (2013) 24.
- R. Khandanlou, M.B. Ahmad, H.R.F. Masoumi, K. Shameli, M.
Basri, K. Kalantari, Rapid adsorption of copper(II) and lead(II)
by rice straw/Fe3O4 nanocomposite: optimization, equilibrium
isotherms, and adsorption kinetics study, PLoS ONE, 10(3)
(2015) 45–53.
- J. Sun, G.L. Yu, L.L. Liu, Z.F. Li, Q.B. Kan, Q.S. Huob, Coreshell
structured Fe3O4@SiO2 supported cobalt(II) or copper(II)
acetylacetonate complexes: magnetically recoverable nanocatalysts
for aerobic epoxidation of styrene, Catal. Sci. Technol., 4
(2014) 1246–1252.
- D.L. Sparks, Kinetics of Soil Chemical Processes, 1st ed., Academic
Press, New York, USA, 1989, pp. 18–29.