References

  1. A.P. Johari, S.K. Kurmvanshi, S. Mohanty, S.K. Nayak, Influence of surface modified cellulose microfibrils on the improved mechanical properties of poly(lactic acid), Int. J. Biol. Macromol., 84 (2016) 329–339.
  2. I. Cacciotti, E. Fortunati, D. Puglia, J.M. Kenny, F. Nanni, Effect of silver nanoparticles and cellulose nanocrystals on electrospun poly(lactic) acid mats: Morphology, thermal properties and mechanical behavior, Carbonhyd. Polym., 103 (2014) 22–31.
  3. S.L. Yang, Z.H. Wu, W. Yang, M.B. Yang, Thermal and mechanical properties of chemical crosslinked polylactide (PLA), Polym. Test, 27 (2008) 957–963.
  4. R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials, Macromol. Biosci., 4 (2004) 835–864.
  5. E. Fortunati, F. Luzi, D. Puglia, R. Petrucci, J.M. Kenny, L. Torre, Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: Innovative reuse of coastal plant, Ind. Crop. Prod., 67 (2015) 439–447.
  6. T.J. Lu, S.M. Liu, M. Jiang, X.L. Xu, Y. Wang, Z.Y. Wang, J. Gou, D. Hui, Z.W. Zhou, Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly (lactic acid) composites, Compos. Part B: Eng., 62 (2014) 191–197.
  7. S.Y. Cho, H.H. Park, Y.S. Yun, H.J. Jin, Cellulose nanowhisker-incorporated poly (lactic acid) composites for high thermal stability, Fiber. Polym., 14 (2013) 1001–1005.
  8. A. Kiziltas, B. Nazari, E.E. Kiziltas, D.J. Gardner, Y. Han, T.S. Rushing, Method to reinforce polylactic acid with cellulose nanofibers via a polyhydroxybutyrate carrier system, Carbonhyd. Polym., 140 (2016) 393–399.
  9. M. Jonoobi, J. Harun, A.P. Mathew, K. Oksman, Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion, Compos. Sci. Technol., 70 (2010) 1742–1747.
  10. Z. Xiong, S. Ma, L. Fan, Z. Tang, R. Zhang, H. Na, J. Zhu, Surface hydrophobic modification of starch with bio-based epoxy resins to fabricate high-performance polylactide composite materials, Compos. Sci. Technol., 94 (2014) 16–22.
  11. A. Iwatake, M. Nogi, H. Yano, Cellulose nanofiber-reinforced polylactic acid, Compos. Sci. Technol., 68 (2008) 2103–2106.
  12. T. Wang, L.T. Drzal, Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach, ACS. Appl. Mater. Inter., 4 (2012) 5079–5085.
  13. P. Qu, Y.T. Zhou, X. Zhang, S. Yao, L.P. Zhang, Surface modification of cellulose nanofibrils for poly(lactic acid) composite application, J. Appl. Polym. Sci., 125 (2012) 3084–3091.
  14. A. Arbelaiz, B. Fernandez, J. Ramos, A. Retegi, R. Llano-Ponte, I. Mondragon, Mechanical properties of short flax fibre bundle/ polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling, Compos. Sci. Technol., 65 (2005) 1582–1592.
  15. M. Murariu, A.L. Dechief, R. Ramy-Ratiarison, Y. Paint, J.M. Raquez, P. Dubois, Recent advances in production of poly(lactic acid) (PLA) nanocomposites: A versatile method to tune crystallization properties of PLA, Nanocomposites, 1 (2015) 71–82.
  16. A. Orue, A. Jauregi, C. Peña-Rodriguez, J. Labidi, A. Eceiza, A. Arbelaiz, The effect of surface modifications on sisal fiber properties and sisal/poly(lactic acid) interface adhesion, Compos. Part B: Eng., 73 (2015) 132–138.
  17. J. Araki, M. Wada, S. Kuga, Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting, Langmuir, 17 (2001) 21–27.
  18. N. Lin, G. Chen, J. Huang, A. Dufresne, P.R. Chang, Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): A case of cellulose whisker-graft-polycaprolactone, J. Appl. Polym. Sci., 113 (2009) 3417–3425.
  19. A. Pei, Q. Zhou, L.A. Berglund, Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA) – Crystallization and mechanical property effects, Compos. Sci. Technol., 70 (2010) 815–821.
  20. G. Chen, A. Dufresne, J. Huang, P.R. Chang, A novel thermoformable bionanocomposite based on cellulose nanocrystal-graft-poly(ε-caprolactone), Macromol. Mater. Eng., 294 (2009) 59–67.
  21. A. Rider, D. Arnott, Boiling water and silane pre-treatment of aluminium alloys for durable adhesive bonding, Int. J. Adhes. Adhes., 20 (2000) 209–220.
  22. E. Robles, I. Urruzola, J. Labidi, L. Serrano, Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites, Ind. Crop. Prod., 71 (2015) 44–53.
  23. F. Bauer, H.J. Gläsel, U. Decker, H. Ernst, A. Freyer, E. Hartmann, V. Sauerland, R. Mehnert, Trialkoxysilane grafting onto nanoparticles for the preparation of clear coat polyacrylate systems with excellent scratch performance, Prog. Org. Coat., 47 (2003) 147–153.
  24. H. Cui, M.R. Kessler, Glass fiber reinforced ROMP-based bio-renewable polymers: Enhancement of the interface with silane coupling agents, Compos. Sci. Technol., 72 (2012) 1264– 1272.
  25. A. Zafar, J.S. Thomsen, R. Sodhi, R. Goacher, D. Kubber, X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry characterization of aging effects on the mineral fibers treated with aminopropylsilane and quaternary ammonium compounds, Surf. Interface. Anal., 44 (2012) 811–818.
  26. R.A. Khan, S. Salmieri, D. Dussault, J. Uribe-Calderon, M.R. Kamal, A. Safrany, M. Lacroix, Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films, J. Agr. Food Chem., 58 (2010) 7878–7885.
  27. J. Lu, P. Askeland, L.T. Drzal, Surface modification of microfibrillated cellulose for epoxy composite applications, Polymer., 49 (2008) 1285–1296.
  28. M. Abdelmouleh, S. Boufi, M. Belgacem, A. Duarte, A.B. Salah, A. Gandini, Modification of cellulosic fibres with functionalised silanes: development of surface properties, Int. J. Adhes. Adhes., 24 (2004) 43–54.
  29. G. Stiubianu, C. Racles, M. Cazacu, B.C. Simionescu, Silicone- modified cellulose. Crosslinking of cellulose acetate with poly [dimethyl (methyl-H) siloxane] by Pt-catalyzed dehydrogenative coupling, J. Mater. Sci., 45 (2010) 4141–4150.
  30. K. Missoum, M.N. Belgacem, J.P. Barnes, M.C. Brochier-Salon, J. Bras, Nanofibrillated cellulose surface grafting in ionic liquid, Soft Matter, 8 (2012) 8338–8349.
  31. L. Matuana, J. Balatinecz, C. Park, R. Sodhi, X-ray photoelectron spectroscopy study of silane-treated newsprint-fibers, Wood. Sci. Technol., 33 (1999) 259–270.
  32. J.M. Raquez, Y. Murena, A.L. Goffin, Y. Habibi, B. Ruelle, F. DeBuyl, P. Dubois, Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: a sustainably-integrated approach, Compos. Sci. Technol., 72 (2012) 544–549.
  33. A.N. Frone, S. Berlioz, J.F. Chailan, D.M. Panaitescu, Morphology and thermal properties of PLA–cellulose nanofibers composites, Carbohyd. Polym., 91 (2013) 377–384.
  34. L. Wang, Y.N. Wang, Z.G. Huang, Y.X. Weng, Heat resistance, crystallization behavior, and mechanical properties of polylactide/nucleating agent composites, Mater. Design, 66 (2015) 7–15.
  35. A.L. Goffin, J.M. Raquez, E. Duquesne, G. Siqueira, Y. Habibi, A. Dufresne, P. Dubois, From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites, Biomacromolecules, 12 (2011) 2456–2465.
  36. H. Liu, D. Liu, F. Yao, Q. Wu, Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites, Bioresour. Technol., 101 (2010) 5685–5692.
  37. D. Wang, J. Yu, J. Zhang, J. He, J. Zhang, Transparent bionanocomposites with improved properties from poly (propylene carbonate) (PPC) and cellulose nanowhiskers (CNWs), Compos. Sci. Technol., 85 (2013) 83–89.