References

  1. M. Sharbatmaleki, J.R. Batista, Multi-cycle bioregeneration of spent perchlorate containing macroporous selective anion-exchange resin, Water Res., 46 (2011) 21–32.
  2. Z.Q. Yang, O. Xiao, B. Chen, L.X. Zhang, H.G. Zhang, X.J. Niu, S.Q. Zhou, Perchlorate adsorption from aqueous solution on inorganic-pillared bentonites, Chem. Eng. J., 223 (2013) 31–39.
  3. E.T. Urbansky, Perchlorate chemistry: implications for analysis and remediation, Biochem. J., 2 (1998) 81–95.
  4. R.T. Wilkin, D.D. Fine, N.G. Burnett, Perchlorate behavior in municipal lake following fireworks displays, Environ. Sci. Technol., 41 (2007) 3966–3971.
  5. H. Ma, N.A. Bonnie, M. Yu, S. Che, Q. Wang, Biological treatment of ammonium perchlorate-contaminated wastewater: A review, J. Water Reuse Desal., 6 (2015) 82–107.
  6. D.R. Parker, A.L. Seyfferth, B.K. Reese, Perchlorate in groundwater: a synoptic survey of ‘‘pristine’’ sites in the coterminous United States, Environ. Sci. Technol., 42 (2008) 1465–1471.
  7. J.S. Traugott, F. Jessika, J.P. Carol, Untersuchung ausgewählter Oberflächen-, Grundund Bodenwasserproben auf Perchlorat in Deutschland: Erste Ergebnisse, Grundwasser-Zeitschrift der Fachsektion, Hydrogeologie, 16 (2011) 37–43.
  8. K. Kannan, M.L. Praamsma, J.F. Oldi, T. Kunisue, R.K. Sinha, Occurrence of perchlorate in drinking water, groundwater, surface water and human saliva from India, Chemosphere, 76 (2009) 22–26.
  9. O. Quiñones, J.E. Oh, B. Vanderford, J.H. Kim, J. Cho, S.A. Snyder, Perchlorate assessment of the Nakdong and Yeongsan watersheds, Republic of Korea, Environ. Toxicol. Chem., 26 (2007) 1349–1354.
  10. K. Kosaka, M. Asami, Y. Matsuoka, M. Kamoshita, S. Kunikane, Occurrence of perchlorate in drinking water sources of metropolitan area in Japan, Water Res., 41 (2007) 3474–3482.
  11. Q. Wu, T. Zhang, H.W. Sun, Perchlorate in tap water, groundwater, surface waters, and bottled water from China and its association with other inorganic anions and with disinfection byproducts, Arch. Environ. Contam. Toxicol., 58 (2010) 543–550.
  12. A.M. Leung, E.N. Pearce, L.E. Braverman, Environmental perchlorate exposure: potential adverse thyroid effects, Curr. Opin. Endocrinol. Diabetes Obesity, 21 (2014) 372–376.
  13. L. Ye, H. You, J. Yao, H. Su, Water treatment technologies for perchlorate: A review, Desalination, 298 (2012) 1–12.
  14. K. Karageorgiou, M. Paschalis, G.N. Anastassakis, Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent, J. Hazard. Mater., 139 (2007) 447–452.
  15. J.H. Xu, N.Y. Gao, D.Y. Zhao, D.Q. Yin, H. Zhang, Y.Q. Gao, W. Shi, Comparative study of nano-iron hydroxide impregnated granular activated carbon (Fe–GAC) for bromate or perchlorate removal, Sep. Purif. Technol., 147 (2015) 9–16.
  16. K. Kuzawa, Y.J. Jung, Y. Kiso, T. Yamada, M. Nagai, T.G. Lee, Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent, Chemosphere, 62 (2006) 45–52.
  17. T. Li, Z.Q. Yang, X.P. Zhang, N.W. Zhu, X.J. Niu, Perchlorate removal from aqueous solution with a novel cationic metal– organic frameworks based on amino sulfonic acid ligand linking with Cu-4,40-bipyridyl chains, Chem. Eng. J., 281 (2015) 1008–1016.
  18. L. Zeng, X.M. Li, J.D. Liu, Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings, Water Res., 38 (2004) 1318–1326.
  19. R. Chitrakar, S. Tezuka, A. Sonoda, K. Sakane, K. Ooi, T. Hirotsu, Selective adsorption of phosphate from seawater and wastewater by amorphous zirconium hydroxide, J. Colloid Interface Sci., 297 (2006) 426–433.
  20. Z. Xiong, D.Y. Zhao, G. Pan, Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles, Water Res., 41 (2007) 3497–3505.
  21. A.M. Moore, C.H. De Leon, T.M. Young, Rate and extent of aqueous perchlorate removal by iron surfaces, Environ. Sci. Technol., 37 (2003) 3189–3198.
  22. B.P. Vellanki, B. Batchelor, Perchlorate reduction by the sulfite/ ultraviolet light advanced reduction process, J. Hazard. Mater., 262 (2013) 348–356.
  23. X. Yu, C. Amrhein, R.M. Markatsumoto, Perchlorate reduction by autotrophic bacteria in the presence of zero-valent iron, Environ. Sci. Technol., 40 (2006) 1328–1334.
  24. K.H. Goh, T.T. Lim, Z.L. Dong, Application of layered double hydroxides for removal of oxyanions: a review, Water Res., 42 (2008) 1343–1368.
  25. Y. Zhang, S. Jing, H.Y. Liu, Reactivity and mechanism of bromate reduction from aqueous solution using Zn–Fe(II)–Al layered double hydroxides, Chem. Eng. J., 266 (2015) 21–27.
  26. T.F. Lv, W. Ma, G. Xin, R. Wang, J. Xu, D.M. Liu, F.J. Liu, D.C. Pan, Physicochemical characterization and sorption behavior of Mg-Ca-Al (NO3) hydrotalcite-like compounds toward removal of fluoride from protein solutions, J. Hazard. Mater., 237–238 (2012) 121–132.
  27. Y.Q. Yang, N.Y. Gao, W.H. Chu, Y.J. Zhang, Y. Ma, Adsorption of perchlorate from aqueous solution by the calcination product of Mg/(Al-Fe) hydrotalcite-like compounds, J. Hazard. Mater., 210 (2012) 318–325.
  28. K. Yang, L.G. Yan, Y.M. Yang, S.J. Yu, R.R. Shan, H.Q. Yu, B.C. Zhu, B. Du, Adsorptive removal of phosphate by Mg–Al and Zn–Al layered double hydroxides: Kinetics, isotherms and mechanisms, Sep. Purif. Technol., 124 (2014) 36–42.
  29. Y.J. Lin, Q.L. Fang, B.L. Chen, Perchlorate uptake and molecular mechanisms by magnesium/aluminum carbonate layered double hydroxides and the calcined layered double hydroxides, Chem. Eng. J., 237 (2014) 38–46.
  30. M.P. Bernardo, F.K.V. Moreira, L.A. Colnago, C. Ribeiro, Physico- chemical assessment of [Mg-Al-PO4]-LDHs obtained by structural reconstruction in high concentration of phosphate, Colloids Surf. A, 497 (2016) 53–62.
  31. Y.J. Lin, Q.L. Fang, B.L. Chen, Metal composition of layered double hydroxides (LDHs) regulating ClO4 adsorption to calcined LDHs via the memory effect and hydrogen bonding, J. Environ. Sci., 26 (2014) 493–501.
  32. L.G. Yan, K. Yang, R.R. Shan, T. Yan, J. Wei, S.J. Yu, H.Q. Yu, B. Du, Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core–shell Fe3O4@LDHs composites with easy magnetic separation assistance, J. Colloid Interf. Sci., 448 (2015) 508–516.
  33. A. Halajnia, S. Oustan, N. Najafi, A.R. Khataee, A. Lakzian, Adsorption-desorption characteristics of nitrate, phosphate and sulfate on Mg-Al layered double hydroxide, Appl. Clay Sci., 80–81 (2013) 305–312.
  34. Guidelines for Drinking Water Quality, Recommendations World Health Organisation (second ed., addendum to vol. 1), World Health Organisation, Geneva (1998) 3.
  35. F. Cavani, F. Trifiro, A. Vaccari, Hydrotalcite-type anionic clays: preparation, properties and applications, Catal. Today, 11 (1991) 173–301.
  36. L.S. Li, J.B. Hui, X.S. Liu, X.X. Liu, Synthesis and characterization of hydrotalcite-containing rare earth, Chem. J. Chin. Univ., 14 (1993) 1048–1050.
  37. S. Yi, Z.H. Yang, S.W. Wang, D.R. Liu, S.Q. Wang, Q.Y. Liu, W.W. Chi, Effects of MgAlCe-CO3 layered double hydroxides on the thermal stability of PVC resin, J. Appl. Polym. Sci., 119 (2011) 2620–2626.
  38. M.A. Ulibarri, I. Pavlovic, C. Barriga, M.C. Hermosín, Adsorption of anionic species on hydrotalcite-like compounds: effect of interlayer anion and crystallinity, Appl. Clay Sci., 18 (2001) 17–27.
  39. J.I.D. Cosimo, V.K. Diez, M. Xu, E. Iglesia, C.R. Apesteguia, Structure and surface and catalytic properties of Mg-Al basic oxides, J. Catal., 178 (1998) 499–510.
  40. L. Lv, J. He, M. Wei, D.G. Evans, X. Duan, Factors influencing the removal of fluoride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides, J. Hazard. Mater., 133 (2006) 119–128.
  41. M.G. Sujana, G. Soma, N. Vasumathi, S. Anand, Studies on fluoride adsorption capacities of amorphous Fe/Al mixed hydroxides from aqueous solutions, J. Fluorine Chem., 130 (2009) 749–754.
  42. A. Agrawal, K.K. Sahu, B.D. Pandey, A comparative adsorption study of copper on various industrial solid wastes, AIChE J., 50 (2004) 2430–2438.
  43. S. Pradhan, S.S. Shukla, K.L. Dorris, Removal of nickel from aqueous solutions using crab shells, J. Hazard. Mater. B., 125 (2005) 201–204.
  44. S. Deng, Y.P. Ting, Fungal biomass with grafted poly (acrylic acid) for enhancement of Cu(II) and Cd(II) biosorption, Langmuir, 21 (2005) 5940–5948.
  45. N.K. Lazaridis, D.D. Asouhidou, Kinetics of sorptive removal of chromium (VI) from aqueous solutions by calcined Mg–Al–CO3 hydrotalcite, Water Res., 37 (2003) 2875–2882.
  46. Y.S. Ho, G. Mckay, Sorption of dye from aqueous solution by peat, Chem. Eng. J., 70 (1998) 115–124.
  47. G. McKay, Y.S. Ho, J.C.Y. Ng, Biosorption of copper from waste waters: a review, Sep. Purif. Meth., 28 (1999) 87–125.
  48. M. Jansson-Charrier, E. Guibal, J. Roussy, Vanadium sorption by chitosan: kinetics and equilibrium, Water Res., 30 (1996) 465–475.
  49. L. Lv, P.D. Sun, Z.Y. Gu, H.G. Du, X.J. Pang, X.H. Tao, R.F. Xu, L.L. Xu, Removal of chloride ion from aqueous solution by ZnAl-NO3 layered double hydroxides as anion-exchanger, J. Hazard. Mater., 161 (2009) 1444–1449.
  50. X. Yuan, Y. Wang, J. Wang, C. Zhou, Q. Tang, X.B. Rao, Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal, Chem. Eng. J., 221 (2013) 204–213.