References
- X. Chang, M.T. Meyer, X. Liu, Q. Zhao, H. Chen, J.A. Chen, W.
Shu, Determination of antibiotics in sewage from hospitals,
nursery and slaughter house, wastewater treatment plant and
source water in Chongqing region of Three Gorge Reservoir in
China, Environ. Pollut., 158 (2010) 1444–1450.
- N. Alavi, A.A. Babaei, M. Shirmardi, A. Naimabadi, G.
Goudarzi, Assessment of oxytetracycline and tetracycline
antibiotics in manure samples in different cities of Khuzestan
Province, Iran, Environ. Sci. Pollut. Res., 22 (2015) 17948–17954.
- R. Hirsch, T. Ternes, K. Haberer, K.L. Kratz, Occurrence of
antibiotics in the aquatic environment, Sci. Total. Environ., 225
(1999) 109–118.
- J. Rivera-Utrilla, G. Prados-Joya, M. Sánchez-Polo, M.A.
Ferro-García, I. Bautista-Toledo, Removal of nitro imidazole
antibiotics from aqueous solution by adsorption/bio
adsorption on activated carbon, J. Hazard. Mater., 170 (2009)
298–305.
- H. Liu, W. Liu, J. Zhang, C. Zhang, L. Ren, Y. Li, Removal of
cephalexin from aqueous solutions by original and Cu (II)/
Fe (III) impregnated activated carbons developed from lotus
stalks Kinetics and equilibrium studies, J. Hazard. Mater., 185
(2011) 1528–1535.
- K. Kummerer, A. Al-Ahmad, V. Mersch-Sundermann,
Biodegradability of some antibiotics, elimination of the
genotoxicity and affection of wastewater bacteria in a simple
test, Chemosphere, 40 (2000) 701–710.
- M.S. Diaz-Cruz, D. Barceló, LC–MS2 trace analysis of
antimicrobials in water, sediment and soil, Trac-Trends. Anal.
Chem., 24 (2005) 645–657.
- A. Gobel, A. Thomsen, C.S. McArdell, A. Joss, W. Giger,
Occurrence and sorption behavior of sulfonamides,
macrolides, and trimethoprim in activated sludge treatment,
Environ. Tci. Technol., 39 (2005) 3981–3989.
- A. Gulkowska, H.W. Leung, M.K. So, S. Taniyasu, N. Yamashita,
L.W. Yeung, P.K. Lam, Removal of antibiotics from wastewater
by sewage treatment facilities in Hong Kong and Shenzhen,
China, Water. Res., 42 (2008) 395–403.
- Z. Bai, Q. Yang, J. Wang, Catalytic ozonation of sulfamethazine
antibiotics using Ce0.1Fe0.9OOH: Catalyst preparation and
performance, Chemosphere. 161 (2016) 174–180.
- N.F. Moreira, J.M. Sousa, G. Macedo, A.R. Ribeiro, L. Barreiros,
M. Pedrosa, C.M. Manaia, Photocatalytic ozonation of urban
wastewater and surface water using immobilized TiO2 with
LEDs: Micropollutants, antibiotic resistance genes and
estrogenic activity, Water. Res., 94 (2016) 10–22.
- H. Niu, Z. Meng, Y. Cai, Fast defluorination and removal of
norfloxacin by alginate/Fe@ Fe3O4 core/shell structured
nanoparticles, J. Hazard. Mater., 227 (2012) 195–203.
- J.A. de Lima Perini, M. Perez-Moya, R.F.P. Nogueira, Photo-Fenton degradation kinetics of low ciprofloxacin concentration
using different iron sources and pH, J. Photoch. Photobio. A.,
259 (2013) 53–58.
- L. Demarchis, M. Minella, R. Nisticò, V. Maurino, C.
Minero, D. Vione, Photo–Fenton reaction in the presence of
morphologically controlled hematite as iron source, J. Photoch.
Photobio. A., 307 (2015) 99–107.
- X.Q. Cheng, C. Zhang, Z.X. Wang, L. Shao, Tailoring
nanofiltration membrane performance for highly-efficient
antibiotics removal by mussel-inspired modification, J. Membr.
Sci., 499 (2016) 326–334.
- A.A. Babaei, E.C. Lima, A. Takdastan, N. Alavi, G. Goudarzi,
M. Vosoughi, M. Shirmardi, Removal of tetracycline antibiotic
from contaminated water media by multi-walled carbon
nanotubes: operational variables, kinetics, and equilibrium
studies, Water. Sci. Technol., 74 (2016) 1202–1216.
- L. Xu, J. Dai, J. Pan, X. Li, P. Huo, Y. Yan, R. Zhang, Performance
of rattle-type magnetic mesoporous silica spheres in the
adsorption of single and binary antibiotics, Chem. Eng. J., 174
(2011) 221–230.
- K. Li, A. Yediler, M. Yang, S. Schulte-Hostede, M.H. Wong,
Ozonation of oxytetracycline and toxicological assessment
of its oxidation by-products, Chemosphere, 72 (2008) 473–
478.
- A.G. Trovo, R.F.P. Nogueira, A. Agüera, A.R. Fernandez-Alba,
S. Malato, Degradation of the antibiotic amoxicillin by photo-Fenton process–chemical and toxicological assessment, Water
Res., 45 (2011) 1394–1402.
- S. Lenore, E. Arnold, D. Andrew, eds., Standardizesd Methods
of Water Examination, Washington, 41 (1998) 531–546.
- A.A. Babaei, Z. Alaee, E. Ahmadpour, A. Ramazanpour-Esfahani, Kinetic modeling of methylene blue adsorption onto
acid-activated spent tea: A comparison between linear and
non-linear regression analysis, J. Adv. Environ. Health. Res., 2
(2014) 197–208.
- H.R. Pouretedal, N. Sadegh, Effective removal of amoxicillin,
cephalexin, tetracycline and penicillin G from aqueous
solutions using activated carbon nanoparticles prepared from
vine wood, J. Water. Process. Eng., 1 (2014) 64–73.
- J. Rivera-Utrilla, C.V. Gómez-Pacheco, M. Sánchez-Polo, J. López-Peñalver, R. Ocampo-Pérez, Tetracycline removal from water by
adsorption/bioadsorption on activated carbons and sludgederived
adsorbents, J. Environ. Manage., 131 (2013). 16–24.
- M.S. Legnoverde, S. Simonetti, E.I. Basaldella, Influence of
pH on cephalexin adsorption onto SBA-15 mesoporous silica:
Theoretical and experimental study, App. Surf. Sci., 300 (2014)
37–42.
- B. Kakavandi, A. Takdastan, N. Jaafarzadeh, M. Azizi,
A. Mirzaei, A. Azari, Application of Fe3O4@C catalyzing
heterogeneous UV-Fenton system for tetracycline removal
with a focus on optimization by a response surface method, J.
Photochem. Photobio. A., 314 (2016) 178–188.
- A.A. Babaei, M. Bahrami, A. Farrokhian Firouzi, A.
Ramazanpour Esfahani, L. Alidokht, Adsorption of
cadmium onto modified nanosized magnetite: kinetic
modeling, isotherm studies, and process optimization, Desal.
Water Treat., 56 (2015) 3380–3392.
- A. Ramazanpour Esfahani, A. Farrokhian Firouzi, Synthesis
and application of stabilized zero-valent iron nanoparticles
for hexavalent chromium removal in saturated sand colum
experimental and modeling studies, Desal. Water Treat., 57
(2016) 15424–15434.
- M.H. Do, N.H. Phan, T.D. Nguyen, T.T.S. Pham, V.K. Nguyen,
T.T.T. Vu, T.K.P. Nguyen, Activated carbon/Fe3O4 nanoparticle
composite: fabrication, methyl orange removal and
regeneration by hydrogen peroxide, Chemosphere, 85 (2011),
1269–1276.
- F. Çeçen, O. Aktas, eds., Activated Carbon for Water and
Wastewater Treatment: Integration of Adsorption and
Biological Treatment, Wiley, 2011, pp. 13–37.
- T.W. Weber, R.K. Chakravorti, Pore and solid diffusion models
for fixed-bed adsorbers, AI. Che. J., 20 (1974) 228–238.
- M.I. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on
promoted iron catalysts, Actaphysiochim., 12 (1940) 217–222.
- N.D. Hutson, R.T. Yang, Theoretical basis for the Dubinin-
Radushkevitch (DR) adsorption isotherm equation,
Adsorption, 3 (1997) 189–195.
- S. Largergren, Zurtheorie der sogenannten adsorption
gelosterstoffe. Kungliga Svenska Vetenskapsakademiens,
Handlingar., 24 (1898) 1–39.
- Y.S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption isotherms,
kinetics, thermodynamics and desorption studies of 2, 4,
6-trichlorophenol on oil palm empty fruit bunch-based
activated carbon, J. Hazard. Mater., 164 (2009) 473–482.
- Z. Liu, F.S. Zhang, R. Sasai, Arsenate removal from water using
Fe3O4-loaded activated carbon prepared from waste biomass,
Chem. Eng. J., 160 (2010) 157–162.
- N. Yang, S. Zhu, D. Zhang, S. Xu, Synthesis and properties of
magnetic Fe3O4-activated carbon nanocomposite particles for
dye removal, Mater. Lett., 62 (2008) 645–657.
- B. Kakavandi, M. Jahangirirad, M. Rafiee, A.R. Esfahani, A.A.
Babaei, Development of response surface methodology for
optimization of phenol and p-chlorophenol adsorption on
magnetic recoverable carbon, Micropor. Mesopor. Mater., 231
(2016) 192–206.
- E. Çalışkan, S. Goktürk, Adsorption characteristics of
sulfamethoxazole and metronidazole on activated carbon,
Separ. Sci. Technol., 45 (2010) 244–255.
- T. Wang, X. Pan, W. Ben, J. Wang, P. Hou, Q. Zhimin,
Adsorptive removal of antibiotics from water using magnetic
ion exchange resin, J. Environ. Sci., 52 (2017) 111–117.
- X. Zhang, W. Guo, H.H. Ngo, H. Wen, N. Li, W. Wu, Performance
evaluation of powdered activated carbon for removing 28
types of antibiotics from water, J. Environ. Manage., 172 (2016)
193–200
- S.A. Umoren, U.J. Etim, A.U. Israel, Adsorption of methylene
blue from industrial effluent using poly(vinyl alcohol), J.
Mater. Environ. Sci., 4 (2013) 75–86.
- B. Kakavandi, A. Esrafili, A. Mohseni-Bandpi, A.J. Jafari, R.R.
Kalantary, Magnetic 3O4@C nanoparticles as adsorbents
for removal of amoxicillin from aqueous solution, Water Sci.
Technol., 69 (2014) 147–155.
- M. Hadavifar, M. Bahramifar, H. Younesi, M. Rastakhiz, Q. Li,
J. Yu, E. Eftekhari, Removal of mercury (II) and cadmium (II)
ions from synthetic wastewater by a newly synthesized amino
and thiolated multi-walled carbon nanotubes, J. Taiwan. Inst.
Chem. Eng., 67 (2016) 397–405.
- G. Nazari, H. Abolghasemi, M. Esmaieli, Batch adsorption of
cephalexin antibiotic from aqueous solution by walnut shellbased
activated carbon, J. Taiwan. Inst. Chem. Eng., 58 (2016)
357–365.
- K.Y. Chen, J.C. Liu, P.N. Chiang, S.L. Wang, W.H. Kuan, Y.M.
Tzou, M.K. Wang, Chromate removal as influenced by the
structural changes of soil components upon carbonization
at different temperatures, Environ. Pollut., 162 (2012) 151–
158.
- A. Ali, K. Saeed, F. Mabood, Removal of chromium (VI) from
aqueous medium using chemically modified banana peels
as efficient low-cost adsorbent, Alex. Eng. J., 3 (2016) 2933–
2942.
- M.R. Samarghandi, T.J. Al-Musawi, A. Mohseni-Bandpi, M.
Zarrabi, Adsorption of cephalexin fromaqueous solution
using natural zeolite and zeolite coated with manganese oxide
nanoparticles, J. Mol. Liq., 211 (2015) 431–441.
- H. Fu, X. Li, J. Wang, P. Lin , C. Chen1, X. Zhang, I.H. Suffet,
Activated carbon adsorption of quinolone antibiotics in water:
Performance, mechanism, and modeling, J. Environ. Sci., 56
(2017) 145–152.
- M.R Taha, K. Ahmad, A.A. Aziz, Z. Chik, B.B.K. Huat, G.S.
Sew, F.H. Ali, Geo environmental aspects of tropical residual
soils, Trop. Residual. Soils. Eng., (2004) 213–229.
- S. Alvarez-Torrellas, R.S. Ribeiro, H.T. Gomes, G. Ovejero, J.
Garcia, Removal of antibiotic compounds by adsorption using
glycerol-based carbon materials, Chem. Eng. J., 2016 (296) 277–
288.
- S. Liu, P. Wu, L. Yu, L. Li, B. Gong, N. Zhua, Z. Dang, C. Yang,
Preparation and characterization of organo-vermiculite
based on phosphatidylcholine and adsorption of two typical
antibiotics, Appl. Clay. Sci., 137 (2017) 160–167.
- A. Fakhri, S. Rashidi, M. Asif, I. Tyagi, S. Agarwal, V.K. Gupta,
Dynamic adsorption behavior and mechanism of cefotaxime,
cefradine and cefazolin antibiotics on CdS-MWCNT nano
composites, J. Mol. Liq., 215 (2016) 269–275.
- Z. Liang, Z. Zhao, T. Sun, W. Shi, F. Cui, Adsorption of
quinolone antibiotic in spherical mesoporous silica, J. Hazard.
Mater., 2016 (15) 8–14.
- Q. Wu, Z. Li, H. Hong, Adsorption of the quinolone antibiotic
nalidixic acid onto montmorillonite and kaolinite, Appl. Clay.
Sci., 74 (2013) 66–73.
- M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, Adsorptive
removal of antibiotics from water and wastewater: progress
and challenges. Sci. Total. Environ., 532 (2015) 112–126.