References

  1. M. Boonsaner, D.W. Hawker, Transfer of oxytetracycline from swine manure to three different aquatic plants: Implications for human exposure, Chemosphere, 122 (2015) 176–182.
  2. C. Saejung, K. Hatai, L. Sanoamuang, The in-vitro antibacterial effects of organic salts, chemical disinfectants and antibiotics against pathogens of black disease in fairy shrimp of Thailand, J. Fish. Dis., 37 (2014) 33–41.
  3. Y. Qi, S. Wu, F. Xi, S. He, C. Fan, B. Dai, J.C. Huang, L. Gao, Performance of a coupled micro-electrolysis, anaerobic and aerobic system for oxytetracycline (OTC) production wastewater treatment, J. Chem. Technol. Biotechnol., 91 (2016) 1290–1298.
  4. E. Zuccato, S. Castiglioni, R. Bagnati, M. Melis, R. Fanelli, Source, occurrence and fate of antibiotics in the Italian aquatic environment, J. Hazard. Mater., 179 (2010) 1042–1048.
  5. L. Song, L. Lei, Y. Shu, J. Lan, H. He, S.P. Mcelmurry, Y. Zhao, Sulfamethoxazole, tetracycline and oxytetracycline and related antibiotic resistance genes in a large-scale landfill, China, Sci. Total Environ., 551–552 (2016) 9–15.
  6. Y. Bai, W. Meng, J. Xu, Y. Zhang, C. Guo, Occurrence, distribution and bioaccumulation of antibiotics in the Liao River Basin in China, Environ. Sci. Processes Impacts, 16 (2014) 586–593.
  7. N. Alavi, A.A. Babaei, M. Shirmardi, A. Naimabadi, G. Goudarzi, Assessment of oxytetracycline and tetracycline antibiotics in manure samples in different cities of Khuzestan Province, Iran, Environ. Sci Pollut. R., 22 (2015) 17948–17954.
  8. V. K. Sharma, N. Johnson, L. Cizmas, K.S. Virender, J. Natalie, C. Leslie, J.M. Thomas, K. Hyunook, A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes, Chemosphere, 150 (2016) 702–714.
  9. T. Ma, X. Pan, L.K. Chen, W. Liu, P. Christie, Y. Luo, L. Wu, Effects of different concentrations and application frequencies of oxytetracycline on soil enzyme activities and microbial community diversity, Eur. J. Soil Biol., 76 (2016) 53–60.
  10. D. Rozman, Z. Hrkal, P. Eckhardt, E. Novotná, Z. Boukalová, Pharmaceuticals in groundwaters: a case study of the psychiatric hospital at Horn Beřkovice, Czech Republic, Environ. Earth Sci., 73 (2015) 3775–3784.
  11. S.R. Batchu, V.R., Panditi, K.E. O’Shea, R.G. Piero, Photodegradation of antibiotics under simulated solar radiation: implications for their environmental fate, Sci. Total Environ., 470–471 (2014) 299–310.
  12. Y. Liu, X. He, Y. Fu, D.D. Dionysiou, Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes, Chem. Eng. J., 284 (2016) 1317–1327.
  13. D.T. Sponza, H. Çelebi, Removal of oxytetracycline (OTC) in a synthetic pharmaceutical wastewater by a sequential anaerobic multichamber bed reactor (AMCBR)/completely stirred tank reactor (CSTR) system: biodegradation and inhibition kinetics, J. Chem. Technol. Biotechnol., 87 (2012) 961–975.
  14. A.C. Elia, V. Ciccotelli, N. Pacini, A.J. Dörr, M. Gili, M. Natali, L. Gasco, M. Prearo, M.C. Abete, Transferability of oxytetracycline (OTC) from feed to carp muscle and evaluation of the antibiotic effects on antioxidant systems in liver and kidney, Fish Physiol. Biochem., 40 (2014) 1055–1068.
  15. L.J. Huang, T. Xu, S.F. Wang, Degradation of azo dyes wastewater using chlorine dioxide and a ternary catalyst NiOCuOx-La2O3/Al2O3, Asian J. Chem., 24 (2012) 1727–1730.
  16. Y. Wang, H. Liu, Y. Xie, T. Ni, G. Liu, Oxidative removal of diclofenac by chlorine dioxide: reaction kinetics and mechanism, Chem. Eng. J., 279 (2015) 409–415.
  17. S. Navalon, M. Alvaro, H. Garcia, Reaction of chlorine dioxide with emergent water pollutants: product study of the reaction of three β-lactam antibiotics with ClO2, Water Res., 42 (2008) 1935–1942.
  18. P. Wang, Y.L. He, C.H. Huang, Oxidation of fluoroquinolone antibiotics and structurally related amines by chlorine dioxide: reaction kinetics, product and pathway evaluation, Water Res., 44 (2010) 5989–5998.
  19. P. Wang, Y.L. He, C.H. Huang, Reactions of tetracycline antibiotics with chlorine dioxide and free chlorine, Water Res., 45 (2011) 1838–1846.
  20. V. Abromaitis, V. Racys, d.M.P. Van, R.J. Meulepas, Biodegradation of persistent organics can overcome adsorptiondesorption hysteresis in biological activated carbon systems, Chemosphere, 149 (2016) 183–189.
  21. J. Cui, X. Wang, Y. Yuan, X. Guo, X. Gu, J. Lei, Combined ozone oxidation and biological aerated filter processes for treatment of cyanide containing electroplating wastewater, Chem. Eng. J., 241 (2014) 184–189.
  22. B. Hou, H. Han, H. Zhuang, X. Peng, S. Jia, K. Li, A novel integration of three-dimensional electro-Fenton and biological activated carbon and its application in the advanced treatment of biologically pretreated Lurgi coal gasification wastewater, Bioresour. Technol., 196 (2015) 721–725.
  23. F. Tian, Z. Qiang, C. Liu, T. Zhang, B. Dong, Kinetics and mechanism for methiocarb degradation by chlorine dioxide in aqueous solution, Chemosphere, 79 (2010) 646–651.
  24. M.A. Dareioti, M. Kornaros, Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system, Bioresour. Technol., 167 (2014) 407–415.
  25. X. Dong, W. Zhou, S. He, Removal of anaerobic soluble microbial products in a biological activated carbon reactor, J. Environ. Sci. China, 25 (2013) 1745–1753.
  26. C. Zhan, W. Zhang, D. Wang, M. Teng, R. Bai, D. Yu, Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical re-flocculation, Water Res., 103 (2016) 170–181.