References

  1. S. Ooraikul, W. Siriwong, S. Siripattanakul, S. Chotpantarat, M. Robson, Risk assessment of organophosphate pesticides for chili consumption from chili farm area, Ubon Ratchathani Province, Thailand, J. Health Res., 25 (2017) 6.
  2. K. Harnpicharnchai, N. Chaiear, L. Charerntanyarak, Residues of organophosphate pesticides used in vegetable cultivation in ambient air, surface water and soil in Bueng Niam subdistrict, Khon Kaen, Thailand, Southeast Asian J. Trop. Med. Public Health, 44 (2013) 1088–1097.
  3. D.J. Hamilton, Á. Ambrus, R.M. Dieterle, A.S. Felsot, C.A. Harris, P.T. Holland, A. Katayama, N. Kuriharas, J. Linders, J. Unsworth, S.S. Wong, K.D. Racke, A. Klein, H.A. Kuiper, R.D. Wauchope, C.A. Bellin, E. Carazo, R.H. Gonzalez, C. Harris, H.G. Nolting, B. Petersen, S. Reynolds, B. Rubin, M. Russell, M. Skidmore, K. Tanaka, S.M. Yeh, B.W. Zeeh, Regulatory limits for pesticide residues in water (IUPAC technical report), Pure Appl. Chem., 75 (2003) 1123–1155.
  4. USEPA, Reregistration Eligibility Decision for Profenofos, 2006. Available at: http://www.epa.gov/oppsrrd1/REDs/profenofos_red.pdf (Accessed February 2014).
  5. B.K. Singh, Organophosphorus-degrading bacteria: ecology and industrial applications, Nat. Rev. Microbiol., 7 (2009) 156–164.
  6. S. Deng, Y. Chen, D. Wang, T. Shi, X. Wu, X. Ma, X. Li, R. Hua, X. Tang, Q.X. Li, Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp. G1, J. Hazard. Mater., 297 (2015) 17–24.
  7. E.M. John, J.M. Shaike, Chlorpyrifos: pollution and remediation, Environ. Chem. Lett., 13 (2015) 269–291.
  8. S. Siripattanakul-Ratpukdi, A.S. Vangnai, P. Sangthean, S. Singkibut, Profenofos insecticide degradation by novel microbial consortium and isolates enriched from contaminated chili farm soil, Environ. Sci. Pollut. Res., 22 (2014) 320–328.
  9. H. Jabeen, S. Iqbal, S. Anwar, R.E. Parales, Optimization of profenofos degradation by a novel bacterial consortium PBAC using response surface methodology, Int. Biodeterior. Biodegrad., 100 (2015) 89–97.
  10. J.S. Chin-Pampillo, K. Ruiz-Hidalgo, M. Masís-Mora, E. Carazo-Rojas, C.E. Rodríguez-Rodríguez, Design of an optimized biomixture for the degradation of carbofuran based on pesticide removal and toxicity reduction of the matrix, Environ. Sci. Pollut. Res., 22 (2015) 19184–19193.
  11. C. Singaraja, S. Chidambaram, P. Anandhan, M.V. Prasanna, C. Thivya, R. Thilagavathi, J. Sarathidasan, Determination of the utility of groundwater with respect to the geochemical parameters: a case study from Tuticorin District of Tamil Nadu (India), Environ. Dev. Sustain., 16 (2014) 689–721.
  12. N. Chandrasekar, S. Selvakumar, Y. Srinivas, J.S. John Wilson, T. Simon Peter, N.S. Magesh, Hydrogeochemical assessment of groundwater quality along the coastal aquifers of southern Tamil Nadu, India, Environ. Earth Sci., 71 (2014) 4739–4750.
  13. J.-Y. Lee, Characteristics of ground and groundwater temperatures in a metropolitan city, Korea: considerations for geothermal heat pumps, Geosci. J. 10 (2006) 165–175.
  14. K. Yasukawa, Y. Uchida, N. Tenma, Y. Taguchi, H. Muraoka, T. Ishii, J. Suwanlert, S. Buapeng, T.H. Nguyen, Groundwater temperature survey for geothermal heat pump application in tropical Asia, Bull. Geol. Surv. Jpn., 60 (2009) 459–467.
  15. B.M. Teklu, P.I. Adriaanse, P.J. Van den Brink, Monitoring and risk assessment of pesticides in irrigation systems in Debra Zeit, Ethiopia, Chemosphere, 161 (2016) 280–291.
  16. S. Jaipieam, P. Visuthismajarn, P. Sutheravut, W. Siriwong, S. Thoumsang, M. Borjan, M. Robson, Organophosphate pesticide residues in drinking water from artesian wells and health risk assessment of agricultural communities, Thailand, Hum. Ecol. Risk Assess., 15 (2009) 1304–1316.
  17. B.P. Patel, A. Kumar, Optimization study for maximizing 2,4-dichlorophenol degradation by Kocuria rhizophila strain using response surface methodology and kinetic study, Desal. Wat. Treat., 57 (2016) 18314–18325.
  18. T. Suwannaruang, K. Wantala, Single-step uncalcined N-TiO2 synthesis, characterizations and its applications on alachlor photocatalytic degradations, Appl. Surf. Sci., 380 (2016) 257–267.
  19. C. Li, H. Zang, Q. Yu, T. Lv, Y. Cheng, X. Cheng, K. Liu, W. Liu, P. Xu, C. Lan, Biodegradation of chlorimuron-ethyl and the associated degradation pathway by Rhodococcus sp. D310-1, Environ. Sci. Pollut. Res., 23 (2016) 8794–8805.
  20. K. Wantala, C. Khamjumphol, N. Thananukool, A. Neramittagapong, Degradation of Reactive Red 3 by heterogeneous Fenton-like process over iron-containing RH-MCM-41 assisted by UV irradiation, Desal. Wat. Treat., 54 (2015) 699–706.
  21. Y.A. Votchitseva, E.N. Efremenko, T.K. Aliev, S.D. Varfolomeyev, Properties of hexahistidine-tagged organophosphate hydrolase, Biochemistry 71 (2006) 167–172.
  22. E. Efremenko, I. Lyagin, Y. Votchitseva, M. Sirotkina, S. Varfolomeyev, Polyhistidine-containing organophosphorus hydrolase with outstanding properties, Biocatal. Biotransform., 25 (2007) 103–108.
  23. R. Hawwa, J. Aikens, R.J. Turner, B.D. Santarsiero, A.D. Mesecar, Structural basis for thermostability revealed through the identification and characterization of a highly thermostable phosphotriesterase-like lactonase from Geobacillus stearothermophilus, Arch. Biochem. Biophys., 488 (2009) 109–120.
  24. Z. Chishti, M. Arshad, Growth linked biodegradation of chlorpyrifos by Agrobacterium and Enterobacter spp., Int. J. Agric. Biol. 15(1) (2013) 19-26.
  25. M. Vidali, Bioremediation. An overview, Pure Appl. Chem., 73 (2001) 1163–1172.
  26. B.K. Singh, A. Walker, J.A.W. Morgan, D.J. Wright, Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium, Appl. Environ. Microbiol., 69 (2003) 5198–5206.