References
- C. Chen, W. Ma, J. Zhao, Semiconductor-mediated
photodegradation of pollutants under visible-light irradiation,
Chem. Soc. Rev., 39 (2010) 4206–4219.
- H. Yin, K. Yu, C. Song, R. Huang, Z. Zhu, Synthesis of
Au-decorated V2O5@ZnO heteronanostructures and enhanced
plasmonic photocatalytic activity, ACS Appl. Mater. Inter., 6
(2014) 14851–14860.
- K. Maeda, K. Domen, Photocatalytic water splitting: recent
progress and future challenges, J. Phys. Chem. Lett., 1 (2010)
2655–2661.
- J.G. Yu, W.G. Wang, B. Cheng, B.L. Su, Enhancement of
photocatalytic activity of mesoporous TiO2 powders by
hydrothermal surface fluorination treatment, J. Phys. Chem. C,
113 (2009) 6743–6750.
- X. Liu, Z.Q. Liu, S.X. Hao, W. Chu, Facile fabrication of welldispersed
silver nanoparticles loading on TiO2 nanotube arrays
by electrodeposition, Mater. Lett., 80 (2012) 66–68.
- Z. Adriana, Doped-TiO2: A review, Recent Pat. Eng., 2 (2008)
157–164.
- M. Pelaeza, T.N.T. Nolan, S.C. Pillai, M.K. Seeryc, P. Falarasd,
A.G. Kontosd, P.S.M. Dunlope, J.W.J. Hamiltone, J. A. Byrnee,
K. O’Sheaf, M.H. Entezarig, D.D. Dionysioua, A review on
the visible light active titanium dioxide photocatalysts for
environmental applications, Appl. Catal., B, 125 (2012) 331–349.
- S. Mallakpour, E. Khadem, Carbon nanotube–metal oxide
nanocomposites: fabrication, properties and applications,
Chem. Eng. J., 302 (2016) 344–367.
- T. Yamabe, M. Imade, M. Tanaka, T. Sato, Electronic structures
and transport properties of carbon nanotube, Synth. Met., 117
(2001) 61–65.
- J. Du, L. Zhao, Y. Zeng, L. Zhang, F. Li, P. Liu, C. Liu, Comparison
of electrical properties between multi-walled carbon nanotube
and graphene nanosheet/high density polyethylene composites
with a segregated network structure, Carbon, 49 (2011)
1094–1100.
- Q. Cheng, J. Bao, J.G. Park, Z. Liang, C. Zhang, B. Wang, High
mechanical performance composite conductor: multi-walled
carbon nanotube sheet/bismaleimide nanocomposites, Adv.
Funct. Mater., 19 (2009) 3219–3225.
- D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of
carbon nanotubes, Chem. Rev., 106 (2006) 1105–1136.
- Z. Nan, C. Wei, Q. Yang, Z. Tan, Thermodynamic properties of
carbon nanotubes, J. Chem. Eng. Data, 54 (2009) 1367–1370.
- P. Diao, Z. Liu, Aligned carbon nanotubes: physics, concepts,
fabrication and devices, Adv. Mater., 22 (2010) 1430–1449.
- S.W. Ko, M.S. Yang, H.J. Choi, Adsorption of polymer coated
magnetite composite particles onto carbon nanotubes and their
magnetorheology, Mater. Lett., 63 (2009) 861–863.
- J.W. Lee, R. Viswan, Y.J. Choi, Y. Lee, S.Y. Kim, J. Cho, Y. Jo,
J.K. Kang, Facile fabrication and superparamagnetism of silicashielded
magnetite nanoparticles on carbon nitride nanotubes,
Adv. Funct. Mater., 19 (2009) 2213–2218.
- J. Chang, J.H. Lee, C.K. Najeeb, G.H. Nam, M. Lee, J.H. Kim,
Area-selective growth of ZnO nanorod arrays on single-walled
carbon nanotube patterns, Scr. Mater., 63 (2010) 520–523.
- F.F. Fang, H.J. Choi, Y. Seo, Sequential coating of magnetic
carbonyliron particles with polystyrene and multiwalled
carbon nanotubes and its effect on their magnetorheology, ACS
Appl. Mater. Inter., 2 (2010) 54–60.
- B.O. Park, B.J. Park, M.J. Hato, H.J. Choi, Soft magnetic carbonyl
iron microsphere dispersed in grease and its rheological
characteristics under magnetic field, Colloid Polym. Sci., 289
(2010) 381–386.
- Y. Dong, D. Tang, C. Li, Special issue: the route to post-Si CMOS
devices: from high mobility channels to graphene-like 2D
nanosheets, Appl. Surf. Sci., 296 (2014) 1–7.
- T. An, J. Chen, X. Nie, G. Li, H. Zhang, X. Liu, H. Zhao, Synthesis
of carbon nanotube–nnatase TiO2 sub-micrometer-sized sphere
composite photocatalyst for synergistic degradation of gaseous
styrene, ACS Appl. Mater. Inter., 4 (2012) 5988–5996.
- H. Wang, S. Dong, Y. Chang, J.L. Faria, Enhancing the
photocatalytic properties of TiO2 by coupling with carbon
nanotubes and supporting gold, J. Hazard. Mater., 235–236
(2012) 230–236.
- Z. Li, B. Gao, G.Z. Chen, R. Mokaya, S. Sotiropoulos, G.L. Puma,
Carbon nanotube/titanium dioxide (CNT/TiO2) core–shell
nanocomposites with tailored shell thickness, CNT content and
photocatalytic/photoelectrocatalytic properties, Appl. Catal., B,
110 (2011) 50–57.
- J.Y. Ahn, J.H. Kim, K.J. Moon, S.D. Park, S.H. Kim, Synergistic
effects of the aspect ratio of TiO2 nanowires and multi-walled
carbon nanotube embedment for enhancing photovoltaic
performance of dye-sensitized solar cell, Nanoscale, 5 (2013)
6842–6850.
- T. Xin, M. Ma, H. Zhang, J. Gu, S. Wang, M. Liu, Q. Zhang,
A facile approach for the synthesis of magnetic separable
Fe3O4@TiO2, core–shell nanocomposites as highly recyclable
photocatalysts, Appl. Surf. Sci., 288 (2014) 51–59.
- J. Jing, J. Li, J. Feng, W. Li, W.W. Yu, Photodegradation of
quinoline in water over magnetically separable Fe3O4/TiO2 composite photocatalysts, Chem. Eng. J., 219 (2013) 355–360.
- K. Mandel, F. Hutter, C. Gellermann, G. Sextl, Reusable
superparamagnetic nanocomposite particles for magnetic
separation of iron hydroxide precipitates to remove and recover
heavy metal ions from aqueous solutions, Sep. Purif. Technol.,
109 (2013)144–147.
- S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst,
R.N. Muller, Magnetic iron oxide nanoparticles: synthesis,
stabilization, vectorization, physicochemical characterizations,
and biological applications, Chem. Rev., 108 (2008) 2064–2110.
- B. Ahmmad, Y. Kusumoto, S. Somekawa, M. Ikeda, Carbon
nanotubes synergistically enhance photocatalytic activity of
TiO2, Catal. Commun., 9 (2008)1410–1413.
- Z. Mo, C. Zhang, R. Guo, S. Meng, J. Zhang, Synthesis of Fe3O4 nanoparticles using controlled ammonia vapor diffusion under
ultrasonic irradiation, Ind. Chem. Eng. Res., 50 (2011)3534–3539.
- J. Lu, M. Wang, C. Deng, X. Zhang, Facile synthesis of Fe3O4@
mesoporous TiO2 microspheres for selective enrichment of
phosphopeptides for phosphoproteomics analysis, Talanta, 105
(2013) 20–27.
- W. Wang, P. Serp, P. Kalck, Visible light photodegradation of
phenol on MWNT-TiO2 composite catalysts prepared by a
modified sol–gel method, J. Mol. Catal., A, 235 (2005) 194–199.
- S. Chang, W. Liu, Surface doping is more beneficial than bulk
doping to the photocatalytic activity of vanadium-doped TiO2,
Appl. Catal., B, 101 (2011) 333–342.
- P. Zhang, Z. Mo, L. Han, X. Zhu, B. Wang, C. Zhang,
Preparation and photocatalytic performance of magnetic TiO2/
montmorillonite/Fe3O4 nanocomposites, Ind. Chem. Eng. Res.,
53 (2014) 8057–8061.
- Z. Mo, P. Zhang, D. Zuo, Y. Sun, H. Chen, Synthesis and
characterization of polyaniline nanorods/Ce(OH)3–Pr2O3/
montmorillonite composites through reverse micelle template,
Mater. Res. Bull., 43 (2008) 1664–1669.
- Y. Wang, Y. Huang, W. Ho, Biomolecule-controlled
hydrothermal synthesis of C–N–S-tridoped TiO2 nanocrystalline
photocatalysts for NO removal under simulated solar light
irradiation, J. Hazard. Mater., 169 (2009) 77–87.
- E. Bae, W. Choi, Highly enhanced photoreductive degradation
of perchlorinated compounds on dye-sensitized metal/TiO2
under visible light, Environ. Sci. Technol., 37 (2003) 147–152.
- G. Hu, X. Meng, X. Feng, Y. Ding, S. Zhang, M. Yang, Anatase
TiO2 nanoparticles/carbon nanotubes nanofibers: preparation,
characterization and photocatalytic properties, J. Mater. Sci., 42
(2007) 7162–7170.
- J. Matos, J. Laine, J.M. Herrmann, Synergy effect in the
photocatalytic degradation of phenol on a suspended mixture
of titania and activated carbon, Appl. Catal., B, 18 (1998)
281–291.
- C.G. Silva, J.L. Faria, Photochemical and photocatalytic
degradation of an azo dye in aqueous solution by UV
irradiation, J. Photochem. Photobiol. A, 155 (2003) 133–143.
- J. Matos, J. Laine, J.M. Herrmann, Effect of the type of activated
carbons on the photocatalytic degradation of aqueous organic
pollutants by UV-irradiated titania, J. Catal., 200 (2001) 10–20.
- Y. Yu, J.C. Yu, J.G. Yu, Y.C. Kwok, Y.K. Che, J.C. Zhao, L. Ding,
W.K. Ge, P.K. Wong, Enhancement of photocatalytic activity of
mesoporous TiO2 by using carbon nanotubes, Appl. Catal., A,
289 (2005) 186–196.
- J. Sun, M. Iwasa, L. Gao, Q.H. Zhang, Single-walled carbon
nanotubes coated with titania nanoparticles, Carbon 42 (2004)
895–899.
- Y. Lin, Zh. Geng, H. Cai, L. Ma, J. Chen, J. Zeng, N. Pan, X. Wang,
Ternary graphene–TiO2–Fe3O4 nanocomposite as a recollectable
photocatalyst with enhanced durability, J. Inorg. Chem., (2012)
4439–4444.
- D. Beydoun, R. Amal, G. K. C. Low, S. McEvoy, Novel
photocatalyst: titania-coated magnetite activity and
photodissolution, J. Phys. Chem., 104 (2000) 4387–4396.
- P. Zhang, Z. Mo, L. Han, Y. Wang, G. Zhaoa, Ch. Zhang, Zh.
Li, Magnetic recyclable TiO2/multi-walled carbon nanotube
nanocomposite: synthesis, characterization and enhanced
photocatalytic activity, J. Mol. Catal., A, 402 (2015) 17–22.
- G. Moon, D. Kim, H. Kim, A.D. Bokare, W. Choi, Platinum-like
behavior of reduced graphene oxide as a cocatalyst on TiO2 for
the efficient photocatalytic oxidation of arsenite, Environ. Sci.
Technol. Lett., 1 (2014) 185–190.
- J. Zhan, H. Zhang, G. Zhu, Magnetic photocatalysts of
cenospheres coated with Fe3O4/TiO2 core/shell nanoparticles
decorated with Ag nanopartilces, Ceram. Int., 40 (2014)
8547–8559.
- V.R. Djokić, A.D. Marinković, O. Ersen, P.S. Uskoković, R.D.
Petrović, V.R. Radmilović, D.T. Janaćković, The dependence
of the photocatalytic activity of TiO2/carbon nanotubes
nanocomposites on the modification of the carbon nanotubes,
Ceram. Int., 40 (2014) 4009–4018.