References

  1. S. Wunder, F. Polzer, Y. Lu, Y. Mei, M. Ballauff, Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes, J. Phys. Chem. C., 114 (2010) 8814–8820.
  2. S. Sarkar, E. Guibal, F. Quignard, A.K. SenGupta, Effect of particle size and content of the metal on the oxygen reduction by silver–ion exchanger nanocomposites, J. Nanopart. Res., 14 (2012) 715–728.
  3. A.N. Shipway, I. Willner, Nanoparticles as structural and functional units in surface confined architectures, Chem. Commun., 20 (2001) 2035–2045.
  4. L.N. Lewis, Chemical catalysis by colloids and clusters, Chem. Rev., 93 (1993) 2693–2730.
  5. M. Haruta, Size and support-dependency in the catalysis of gold, Catal. Today, 36 (1997) 153–166.
  6. H. Lang, S. Maldonado, K.J. Stevenson, B.D. Chandler, Synthesis and characterization of dendrimer templated supported bimetallic Pt−Au nanoparticles, J. Am. Chem. Soc., 126 (2004) 12949–12596.
  7. T. Mitsudome, Y. Mikami, H. Funai, T. Mizugaki, K. Jitsukawa, K. Kaneda, Oxidant free alcohol dehydrogenation using a reusable hydrotalcite-supported silver nanoparticle catalyst, Angew. Chem. Int. Ed., 120 (2008) 144–147.
  8. Ramtenki, V.D. Anumon, M.V. Badiger, B.L.V. Prasad, Gold nanoparticle embedded hydrogel matrices as catalysts: better dispersibility of nanoparticles in the gel matrix upon addition of N-bromosuccinimide leading to increased catalytic efficiency, Colloid. Surf. A., 414 (2012) 296–301.
  9. J .He, T. Kunitake, A. Nakao, Facile in situ synthesis of noble metal nanoparticles in porous fibers, Chem. Mater., 15 (2003) 4401–4406.
  10. R.W.J. Scott, O.M. Wilson, R.M. Crooks, Synthesis, characterization and applications of dendrimer-encapsulated nanoparticles, J. Phys. Chem. B., 109 (2005) 692–704.
  11. B.R. Cuenya, S.H. Baeck, T.F. Jaramillo, E.W. McFarland, Sizeand support-dependent electronic and catalytic properties of Au0/Au3+ nanoparticles synthesized from block copolymer micelles, J. Am. Chem. Soc., 125 (2003) 12928–12934.
  12. J.H. Kim, T.R. Lee, Hydrogel-templated growth of large gold nanoparticles: synthesis of thermally responsive hydrogel−nanoparticle composites, Langmuir, 23 (2007) 6504–6509.
  13. Y.M. Mohan, K. Lee, T. Premkumar, K.E. Geckeler, Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications, Polymer, 48 (2007) 158–164.
  14. Y.M. Mohan, K. Vimala, V. Thomas, K. Varaprasad, B. Sreedhar, S.K. Bajpai, K.M. Raju, Controlling of silver nanoparticles structure by hydrogel, J. Colloid. Interface Sci., 342 (2010) 73–82.
  15. N. Calace, E. Nardi, B.M. Petronio, M. Pietroletti, Adsorption of phenols by paper mill sludges, Environ. Pollut., 118 (2002) 315–319.
  16. T. Komatsu, T. Hirose, Gas phase synthesis of paraaminophenol from nitrobenzene on Pt/zeolite catalysts, Appl. Catal., A, 276 (2004) 95–102.
  17. S.U. Sonavane, M.B. Gawande, S.S. Deshpande, A. Venkataraman, R.V. Jayaram, Chemoselective transfer hydrogenation reactions over nanosized γ-Fe2O3 catalyst prepared by novel combustion rout, Catal. Commun., 8 (2007) 1803–1806.
  18. L. Shang, T. Bian, B. Zhang, D.D. Zhang, L.-Z. Wu, C.-Ho Tung, Y. Yin, T. Zhang, Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions, Angew. Chem., 126 (2014) 254–258.
  19. R. Brayner, M.J. Vaulay, F. Fievet, T. Coradin, Alginatemediated growth of Co, Ni, and CoNi nanoparticles: influence of the biopolymer structure, Chem. Mat., 19 (2007) 1190–1198.
  20. A. Pal, K. Esumi, Photochemical synthesis of biopolymer coated Au core–Ag shell type bimetallic nanoparticles, J. Nanosci. Nanotech., 7 (2007) 2110–2115.
  21. X. Zhao, Y. Jin, F. Zhang, Y. Zhong, W. Zhu, Catalytic hydrogenation of 2,3,5-trimethylbenzoqusnone over Pd nanoparticles confined in the cages of MIL-101(Cr), Chem. Eng. J., 239 (2014) 33–41.
  22. Q.Z. Yan, W.F. Zhang, G.D. Lu, X.T. Su, C.C. Ge, Frontal polymerization synthesis of starch-grafted hydrogels: effect of temperature and tube size on propagating front and properties of hydrogels, Chemistry, 12 (2006) 3303–3309.
  23. P. Lanthong, R. Nuisin, S. Kiatkamjornwong, Graft copolymerization, characterization and degradation of cassava starch-g-acrylamide/itaconic acid super absorbents, Carbohydr. Polym., 66 (2006) 229–245.
  24. M. Irani, H. Ismail, Z. Ahmad, M. Fan, Synthesis of linear lowdensity polyethylene-g-poly (acrylic acid)-co-starch/organomontmorillonite hydrogel composite as an adsorbent for removal of Pb(ΙΙ) from aqueous solutions, J. Environ. Sci., 27 (2015) 9–20.
  25. G. Canché-Escamilla, M. Canché-Canche, S. Duarte-Aranda, M. Cáceres-Farfan, R. Borges-Argaez, Mechanical properties and biodegradation of thermoplastic starches obtained from grafted starches with acrylics, Carbohydr. Polym., 86 (2011) 1501–1508.
  26. I. Yoshiaki, K. Masa-aki, Determination of phenylenediamine and related antioxidants in rubber boots by high performance liquid chromatography. Development of an analytical method for N-(1-Methylheptyl)-N′-phenyl-p-phenylenediamine, J. Health. Sci., 46 (2000) 467–473.
  27. T. Swathi, G. Buvaneswari, Application of NiCo2O4 as a catalyst in the conversion of p-nitrophenol to p-aminophenol, Mat. Lett., 62 (2008) 3900–3902.
  28. M. Ajmal, M. Siddiq, H. Al-Lohedanc, N. Sahiner, Highly versatile p(MAc)–M (M: Cu, Co, Ni) microgel composite catalyst for individual and simultaneous catalytic reduction of nitro compounds and dyes, RSC Adv., 4 (2014) 59562–59570.
  29. R. Contreras-Cáceres, A. Sánchez-Iglesias, M. Karg, I. Pastoriza-Santos, J. Pérez-Juste, J. Pacico, T. Hellweg, A. Fernández-Barbero, L.M. Liz-Marzán, Encapsulation and growth of gold nanoparticles in thermoresponsive microgels, Adv. Mat., 20 (2008) 1666–1670.
  30. S. Jana, S.K. Ghosh, S. Nath, S. Pande, S. Praharaj, S. Panigrahi, S. Basu, T. Endo, T. Pal, Synthesis of silver nanoshell-coated cationic polystyrene beads: a solid phase catalyst for the reduction of 4-nitrophenol, Appl. Catal., A, 313 (2006) 41–48.
  31. S.K. Ghosh, M. Mandal, S. Kundu, S. Nath, T. Pal, Bimetallic Pt–Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution, Appl. Catal. A., 268 (2004) 61–66.
  32. S. Butun, N. Sahiner, A versatile hydrogel template for metal nanoparticle preparation and their use in catalysis, Polymer, 52 (2011) 4834–4840.
  33. N. Sahiner, H. Ozay, O. Ozay, N. Aktas, A soft hydrogel reactor for cobalt nanoparticle preparation and use in the reduction of nitrophenols, Appl. Catal. B., 101 (2010) 137–143.
  34. N. Sahiner, O. Ozay, Enhanced catalytic activity in the reduction of 4-nitrophenol and 2-nitrophenol by p(AMPS)-Cu hydrogel composite materials, Curr. Nanosci., 8 (2012) 367–374.
  35. S.U. Rehman, M. Siddiq, H. Al-Lohedan, N. Sahiner, Cationic microgels embedding metal nanoparticles in the reduction of dyes and nitro-phenols, Chem. Eng. J., 265 (2015) 201–209.
  36. N. Sahiner, H. Ozay, O. Ozay, N. Aktas, A soft hydrogel reactor for cobalt nanoparticle preparation and use in the reduction of nitrophenols, Appl. Catal. B, 102 (2010) 137–143.
  37. J. Lu, Y. Fu, Y. Song, D. Wanga, C. Lu, Temperature-dependent catalytic reduction of 4-nitrophenol based on silver nanoclusters protected by a thermo-responsive copolymer ligand, RSC Adv., 6 (2016) 14247–14252.
  38. S. M. Alshehri, T. Almuqati, N. Almuqati, E. Al-Farraj, N. Alhokbany, T. Ahamad, Chitosan based polymer matrix with silver nanoparticles decorated multiwalled carbon nanotubes for catalytic reduction of 4-nitrophenol, Carbohydr. Polym., 151 (2016) 135–143.