References

  1. A.M. Farooque, A.T.M. Jamaluddin, A.R. Al-Reweli, P.A.M. Jalaluddin, S.M. Al-Marwani, A.A. Al-Mobayed, A.H. Qasim, Parametric analyses of energy consumption and losses in SWCC SWRO plants utilizing energy recovery devices, Desalination, 219 (2008) 137–159.
  2. R.L. Stover, Development of a fourth generation energy recovery device. A “CTO’s notebook,” Desalination, 165 (2004) 313–321.
  3. E. Oklejas, W.F. Pergande, Integration of advanced highpressure pumps and energy recovery equipment yields reduced capital and operating costs of seawater RO systems, Desalination, 127 (2000) 181–188.
  4. T. Manth, M. Gabor, E. Oklejas, Minimizing RO energy consumption under variable conditions of operation, Desalination, 157 (2003) 9–21.
  5. E. Xu, Y. Wang, J. Wu, S. Xu, Y. Wang, S. Wang, Investigations on the applicability of hydrostatic bearing technology in a rotary energy recovery device through CFD simulation and validating experiment, Desalination, 383 (2016) 60–67.
  6. R.L. Stover, J. Martin, Reverse osmosis and osmotic power generation with isobaric energy recovery, Desal. Wat. Treat., 15 (2010) 267–270.
  7. R.L. Stover, Retrofits to improve desalination plants, Desal. Wat. Treat., 13 (2010) 33–41.
  8. J. Sun, Y. Wang, S. Xu, S. Wang, Energy recovery device with a fluid switcher for seawater reverse osmosis system, Chin. J. Chem. Eng., 16 (2008) 329–332.
  9. X. Wang, Y. Wang, J. Wang, S. Xu, Y. Wang, S. Wang, Comparative study on stand-alone and parallel operating schemes of energy recovery device for SWRO system, Desalination, 254 (2010) 170–174.
  10. A. Zhu, P.D. Christofides, Y. Cohen, Effect of thermodynamic restriction on energy cost optimization of RO membrane water desalination, Ind. Eng. Chem. Res., 48 (2009) 6010–6021.
  11. A. Zhu, P.D. Christofides, Y. Cohen, Minimization of energy consumption for a two-pass membrane desalination: effect of energy recovery, membrane rejection and retentate recycling, J. Membr. Sci., 339 (2009) 126–137.
  12. Z. Yihui, D. Xinwei, J. Maowei, C. Yuqing, Numerical simulation on a dynamic mixing process in ducts of a rotary pressure exchanger for SWRO, Desal. Wat. Treat., 1 (2009) 107–113.
  13. O.M. Al-Hawaj, Theoretical analysis of sliding vane energy recovery device, Desal. Wat. Treat., 36 (2011) 354–362.
  14. L. Li, Y. Zhao, B. Guo, P. Shu, J. Shen, S. He, Wrap of cylinder and its effect on main features of rotary vane compressor for automobile air conditioning system, Int. J. Refrig., 26 (2003) 566–574.
  15. L. Song, L. Zeng, J. Zhou, X. Luo, Profile design for the cylinder of a double-acting rotary vane compressor, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 230 (2016) 2300–2313.
  16. X. Jia, B. Zhang, B. Yang, X. Peng, Study of a rotary vane expander for the transcritical CO2 cycle—Part II: theoretical modeling, HVAC&R Res., 15 (2009) 689–709.
  17. O. Al-Hawaj, Theoretical modeling of sliding vane compressor with leakage, Int. J. Refrig., 32 (2009) 1555–1562.
  18. Y. Lu, W. Zhang, Y. Zhao, Z. Wang, P. Shu, Studies on several key problems of water hydraulic vane pump, Ind. Lubr. Tribol., 63 (2011) 134–141.
  19. A. Giuffrida, R. Lanzafame, Cam shape and theoretical flow rate in balanced vane pumps, Mech. Mach. Theory, 40 (2005) 353–369.
  20. Y. Lu, Y. Zhao, G. Bu, P. Shu, The integration of water vane pump and hydraulic vane motor for a small desalination system, Desalination, 276 (2011) 60–65.
  21. B. Yang, X. Peng, S. Sun, B. Guo, Z. Xing, Study of a rotary vane expander for the transcritical CO2 cycle—Part I: experimental investigation, HVAC&R Res., 15 (2009) 673–688.
  22. B. Yang, X. Peng, S. Sun, B. Guo, Z. Xing, A study of the vane dynamics in a rotary vane expander for the transcritical CO2 refrigeration cycle, Proc. Inst. Mech. Eng., Part A: J. Power Energy, 223 (2009) 429–440.
  23. G. Bianchi, R. Cipollone, Friction power modeling and measurements in sliding vane rotary compressors, Appl. Therm. Eng., 84 (2015) 276–285.
  24. G. Bianchi, R. Cipollone, Theoretical modeling and experimental investigations for the improvement of the mechanical efficiency in sliding vane rotary compressors, Appl. Energy, 142 (2015) 95–107.
  25. Y. Inaguma, A. Hibi, Vane pump theory for mechanical efficiency, Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci., 219 (2005) 1269–1278.
  26. J.P. MacHarg, Retro-fitting existing SWRO systems with a new energy recovery device, Desalination, 153 (2003) 253–264.
  27. A.M. Gilau, M.J. Small, Designing cost-effective seawater reverse osmosis system under optimal energy options, Renew. Energy, 33 (2008) 617–630.
  28. N. Kishizawa, K. Tsuzuki, M. Hayatsu, Low pressure multistage RO system developed in “Mega-ton Water System” for large-scaled SWRO plant, Desalination, 368 (2015) 81–88.