References

  1. V. Lindstrand, G. Sundstrom, A.S. Jonsson, Fouling of electrodialysis membranes by organic substances, Desalination, 128 (2000) 91–102.
  2. H. Strathmann, Ion-Exchange Membrane Separation Processes, Elsevier, 2004.
  3. H. Guo, L. Xiao, S. Yu, H. Yang, J. Hu, G. Liu, Y. Tang, Analysis of anion exchange membrane fouling mechanism caused by anion polyacrylamide in electrodialysis, Desalination, 346 (2014) 46–53.
  4. H. Lee, M. Hong, S. Han, J. Shim, S. Moon, Analysis of fouling potential in the electrodialysis process in the presence of an anionic surfactant foulant, J. Membr. Sci., 325 (2008) 719–726.
  5. H.-J. Lee, J.-H. Choi, J. Cho, S.-H. Moon, Characterization of anion exchange membranes fouled with humate during electrodialysis, J. Membr. Sci., 203 (2002) 115–126.
  6. J.-S. Park, J.-H. Choi, K.-H. Yeon, S.-H. Moon, An approach to fouling characterization of an ion-exchange membrane using current–voltage relation and electrical impedance spectroscopy, J. Colloid Interface Sci., 294 (2006) 129–138.
  7. S. Mulyati, R. Takagi, A. Fujii, Y. Ohmukai, T. Maruyama, H. Matsuyama, Improvement of the antifouling potential of an anion exchange membrane by surface modification with a polyelectrolyte for an electrodialysis process, J. Membr. Sci., 417 (2012) 137–143.
  8. S. Mulyati, R. Takagi, A. Fujii, Y. Ohmukai, H. Matsuyama, Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an electrodialysis process, using polyelectrolyte multilayer deposition, J. Membr. Sci., 431 (2013) 113–120.
  9. L. Zou, I. Vidalis, D. Steele, A. Michelmore, S. Low, J. Verberk, Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling, J. Membr. Sci., 369 (2011) 420–428.
  10. Z. Zhao, H. Cao, S. Shi, Y. Li, L. Yao, Characterization of anion exchange membrane modified by electrodeposition of polyelectrolyte containing different functional groups, Desalination, 386 (2016) 58–66.
  11. K.R. Kull, M.L. Steen, E.R. Fisher, Surface modification with nitrogen-containing plasmas to produce hydrophilic, lowfouling membranes, J. Membr. Sci., 246 (2005) 203–215.
  12. H.-Y. Yu, X.-C. He, L.-Q. Liu, J.-S. Gu, X.-W. Wei, Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: N2 plasma treatment, Water Res., 41 (2007) 4703–4709.
  13. H.-Y. Yu, L.-Q. Liu, Z.-Q. Tang, M.-G. Yan, J.-S. Gu, X.-W. Wei, Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: air plasma treatment, J. Membr. Sci., 311 (2008) 216–224.
  14. D. Weibel, C. Vilani, A. Habert, C. Achete, Surface modification of polyurethane membranes using RF-plasma treatment with polymerizable and non-polymerizable gases, Surf. Coat. Technol., 201 (2006) 4190–4194.
  15. D. Wilson, N. Rhodes, R. Williams, Surface modification of a segmented polyetherurethane using a low-powered gas plasma and its influence on the activation of the coagulation system, Biomaterials, 24 (2003) 5069–5081.
  16. S. Sultana, J. Matsui, S. Mitani, M. Mitsuishi, T. Miyashita, Silicon-containing polymer nanosheets for oxygen plasma resist application, Polymer, 50 (2009) 3240–3244.
  17. I. Tepermeister, H. Sawin, X‐ray photoelectron spectroscopy study of polymer surface reactions in F2 and O2 gases and plasmas, J. Vac. Sci. Technol., A, 10 (1992) 3149–3157.
  18. E. Alkan, E. Kır, L. Oksuz, Plasma modification of the anionexchange membrane and its influence on fluoride removal from water, Sep. Purif. Technol., 61 (2008) 455–460.
  19. X.-y. Zhao, Q. Wang, S.-y. Shi, W. Cong, Measurement of area resistance of ion-exchange membrane and its influential factors, Chin. J. Process Eng., 11 (2011) 329–335 (in Chinese).
  20. Y.-H. Choi, J.-H. Kim, K.-H. Paek, W.-T. Ju, Y.S. Hwang, Characteristics of atmospheric pressure N2 cold plasma torch using 60-Hz AC power and its application to polymer surface modification, Surf. Coat. Technol., 193 (2005) 319–324.
  21. J. Fresnais, J.P. Chapel, F. Poncin-Epaillard, Synthesis of transparent superhydrophobic polyethylene surfaces, Surf. Coat. Technol., 200 (2006) 5296–5305.
  22. C. López-Santos, F. Yubero, J. Cotrino, A.R. González-Elipe, Nitrogen plasma functionalization of low density polyethylene, Surf. Coat. Technol., 205 (2011) 3356–3364.
  23. C.M. Cepeda-Jiménez, R. Torregrosa-Maciá, J.M. Martí, Surface modifications of EVA copolymers by using RF oxidizing and non-oxidizing plasmas, Surf. Coat. Technol., 174 (2003) 94–99.
  24. S. Rutherford, D. Do, Review of time lag permeation technique as a method for characterisation of porous media and membranes, Adsorption, 3 (1997) 283–312.
  25. B.D. Tompkins, J.M. Dennison, E.R. Fisher, H2O plasma modification of track-etched polymer membranes for increased wettability and improved performance, J. Membr. Sci., 428 (2013) 576–588.
  26. W. Garcia-Vasquez, R. Ghalloussi, L. Dammak, C. Larchet, V. Nikonenko, D. Grande, Structure and properties of heterogeneous and homogeneous ion-exchange membranes subjected to ageing in sodium hypochlorite, J. Membr. Sci., 452 (2014) 104–116.
  27. H.J. Li, X.B. Wang, Y.L. Song, Y.Q. Liu, Q.S. Li, L. Jiang, D.B. Zhu, Super-”amphiphobic” aligned carbon nanotube films, Angew. Chem. Int. Ed., 40 (2001) 1743–1746.
  28. M.-G. Yan, L.-Q. Liu, Z.-Q. Tang, L. Huang, W. Li, J. Zhou, J.-S. Gu, X.-W. Wei, H.-Y. Yu, Plasma surface modification of polypropylene microfiltration membranes and fouling by BSA dispersion, Chem. Eng. J., 145 (2008) 218–224.