References

  1. H. Xu, J. Liu, Y. Wang, G. Cheng, X. Deng, X. Li, Oil removing efficiency in oil-water separation flotation column, Desal. Wat. Treat., 53 (2015) 2456–2463.
  2. F. Boysan, W.H. Ayers, J. Swithenbank, A fundamental mathematical modelling approach to cyclone design, Trans. Inst. Chem. Eng., 60 (1982) 222–230.
  3. J.H. Son, M. Hong, H.C. Yoo, Y.I. Kim, H.D. Kim, J.T. Kim, A multi-hydro cyclone water pretreatment system to reduce suspended solids and the chemical oxygen demand, Desal. Wat. Treat., 57 (2016) 2996–3001.
  4. W. Xu, Q. Li, J. Wang, Y. Jin, Performance evaluation of a new cyclone separator – part II simulation results, Sep. Purif. Technol., 160 (2016) 112–116.
  5. X. Gu, J. Song, Y. Wei, Experimental study of pressure fluctuation in a gas-solid cyclone separator, Powder Technol., 299 (2016) 217–225.
  6. K. Elsayed, C. Lacor, The effect of the dust outlet geometry on the performance and hydrodynamics of gas cyclones, Comput. Fluids, 68 (2012) 134–147.
  7. Y. Su, A. Zheng, B. Zhao, Numerical simulation of effect of inlet configuration on square cyclone separator performance, Powder Technol., 210 (2011) 293–303.
  8. S. Bernardo, M. Mori, A.P. Peres, R.P. Dionisio, 3-D computational fluid dynamics for gas and gas particle flows in a cyclone with different inlet section angles, Powder Technol., 162 (2006) 190–200.
  9. J. Gimbun, T.G. Chuah, T.S.Y. Choong, A. Fakhru’l-Razi, Prediction of the effects of cone tip diameter on the cyclone performance, J. Aerosol Sci., 36 (2005) 1056–1065.
  10. J. Chen, X. Liu, Simulation of a modified cyclone separator with a novel exhaust, Sep. Purif. Technol., 73 (2010) 100–105.
  11. G. Gong, Z. Yang, S. Zhu, Numerical simulation of the effect of helix angle and leaf margin on the flow pattern and the performance of the axial flow cyclone separator, Appl. Math. Modell., 36 (2012) 3916–3930.
  12. A. Raoufi, M. Shams, M. Farzaneh, R. Ebrahimi, Numerical simulation and optimization of fluid flow in cyclone vortex finder, Chem. Eng. Process., 47 (2008) 128–137.
  13. H. Safikhani, M.A. Akhavan-Behabadi, N. Nariman-Zadeh, M.J. Mahmood Abadi, Modeling and multi-objective optimization of square cyclones using CFD and neural networks, Chem. Eng. Res. Des., 89 (2011) 301–309.
  14. S. Pishbin, M. Moghiman, Optimization of cyclone separators using genetic algorithm, Chem. Eng., 2 (2010) 686–691.
  15. M.B. Ray, P.E. Luning, A.C. Hoffmann, Post cyclone (PoC): an innovative way to reduce the emission of fines from industrial cyclones, Ind. Eng. Chem. Res., 36 (1997) 2766–2774.
  16. J. Jiao, Y. Zheng, G. Sun, J. Wang, Study of the separation efficiency and flow field of a dynamic cyclone, Sep. Purif. Technol., 49 (2006) 157–166.
  17. C.J. Stairmand, The design and performance of cyclone separators, Ind. Eng. Chem., 29 (1951) 356–383.
  18. A. Avci, I. Karagoz, Theoretical investigation of pressure losses in cyclone separators, Int. Commun. Heat Mass Transfer, 28 (2001) 107–117.
  19. E. Muschelknautz, M. Trefz, Design and Calculation of Higher and Highest Loaded Gas Cyclones, Proceedings of Second World Congress on Particle Technology, 1990, pp. 52–71.
  20. J. Chen, M. Shi, A universal model to calculate cyclone pressure drop, Powder Technol., 171 (2007) 184–191.
  21. B. Zhao, A theoretical approach to pressure drop across cyclone separators, Chem. Eng. Technol., 27 (2004) 1105–1108.
  22. C.B. Shepherd, C.E. Lapple, Flow pattern and pressure drop in cyclone dust collectors, Ind. Eng. Chem., 31 (1939) 972–984.
  23. R.K. Sinnott, Chemical Engineering Design, Elsevier Science, Oxford, 2005.
  24. K. Elsayed, C. Lacor, Optimization of the cyclone separator geometry for minimum pressure drop using mathematical models and CFD simulations, Chem. Eng. Sci., 65 (2010) 6048–6058.
  25. J.S. Cowpe, J.S. Astin, R.D. Pilkington, A.E. Hill, Application of response surface methodology to laser-induced breakdown spectroscopy: influences of hardware configuration, Spectrochim. Acta, Part B, 62 (2007) 1335–1342.
  26. G.E.P. Box, K.B. Wilson, On the experimental attainment of optimum conditions, J. R. Stat. Soc., 13 (1951) 1–45.
  27. Z. Michalevicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer, New York, 1992.
  28. C.R. Reeves, Genetic algorithms for the operation researcher, INFORMS J. Comput., 9 (1997) 231–250.
  29. G. Gronald, J.J. Derksen, Simulating turbulent swirling flow in a gas cyclone: a comparison of various modeling approaches, Powder Technol., 205 (2011) 160–171.
  30. B.E. Launder, N. Shima, Second-moment closure for the nearwall sub layer: development and application, AIAA J., 27 (1989) 1319–1325.
  31. M.M. Gibson, B.E. Launder, Ground effects on pressure fluctuations in the atmospheric boundary layer, J. Fluid Mech., 86 (1978) 491–511.
  32. S. Fu, B.E. Launder, M.A. Leschziner, Modeling Strongly Swirling Recirculating Jet Flow with Reynolds-Stress Transport Closures, Sixth Symposium on Turbulent Shear Flows, Toulouse, France, 1987.
  33. B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows, Comput. Methods Appl. Mech. Eng., 3 (1974) 269–289.
  34. Fluent, Inc., Fluent 6.1.22 Users’ Guide, 2004.
  35. B. Zhao, Y. Su, J. Zhang, Simulation of gas flow pattern and separation efficiency in cyclone with conventional single and spiral double inlet configuration, Chem. Eng. Res. Des., 84 (2006) 1158–1165.
  36. S.A. Morsi, A.J. Alexander, An investigation of particle trajectories in two phase flow systems, J. Fluid Mech., 55 (1972) 193–208.