References
- H. Xu, J. Liu, Y. Wang, G. Cheng, X. Deng, X. Li, Oil removing
efficiency in oil-water separation flotation column, Desal. Wat.
Treat., 53 (2015) 2456–2463.
- F. Boysan, W.H. Ayers, J. Swithenbank, A fundamental
mathematical modelling approach to cyclone design, Trans.
Inst. Chem. Eng., 60 (1982) 222–230.
- J.H. Son, M. Hong, H.C. Yoo, Y.I. Kim, H.D. Kim, J.T. Kim, A
multi-hydro cyclone water pretreatment system to reduce
suspended solids and the chemical oxygen demand, Desal. Wat.
Treat., 57 (2016) 2996–3001.
- W. Xu, Q. Li, J. Wang, Y. Jin, Performance evaluation of a
new cyclone separator – part II simulation results, Sep. Purif.
Technol., 160 (2016) 112–116.
- X. Gu, J. Song, Y. Wei, Experimental study of pressure
fluctuation in a gas-solid cyclone separator, Powder Technol.,
299 (2016) 217–225.
- K. Elsayed, C. Lacor, The effect of the dust outlet geometry on
the performance and hydrodynamics of gas cyclones, Comput.
Fluids, 68 (2012) 134–147.
- Y. Su, A. Zheng, B. Zhao, Numerical simulation of effect of
inlet configuration on square cyclone separator performance,
Powder Technol., 210 (2011) 293–303.
- S. Bernardo, M. Mori, A.P. Peres, R.P. Dionisio, 3-D
computational fluid dynamics for gas and gas particle flows in
a cyclone with different inlet section angles, Powder Technol.,
162 (2006) 190–200.
- J. Gimbun, T.G. Chuah, T.S.Y. Choong, A. Fakhru’l-Razi,
Prediction of the effects of cone tip diameter on the cyclone
performance, J. Aerosol Sci., 36 (2005) 1056–1065.
- J. Chen, X. Liu, Simulation of a modified cyclone separator with
a novel exhaust, Sep. Purif. Technol., 73 (2010) 100–105.
- G. Gong, Z. Yang, S. Zhu, Numerical simulation of the effect
of helix angle and leaf margin on the flow pattern and the
performance of the axial flow cyclone separator, Appl. Math.
Modell., 36 (2012) 3916–3930.
- A. Raoufi, M. Shams, M. Farzaneh, R. Ebrahimi, Numerical
simulation and optimization of fluid flow in cyclone vortex
finder, Chem. Eng. Process., 47 (2008) 128–137.
- H. Safikhani, M.A. Akhavan-Behabadi, N. Nariman-Zadeh, M.J.
Mahmood Abadi, Modeling and multi-objective optimization
of square cyclones using CFD and neural networks, Chem. Eng.
Res. Des., 89 (2011) 301–309.
- S. Pishbin, M. Moghiman, Optimization of cyclone separators
using genetic algorithm, Chem. Eng., 2 (2010) 686–691.
- M.B. Ray, P.E. Luning, A.C. Hoffmann, Post cyclone (PoC): an
innovative way to reduce the emission of fines from industrial
cyclones, Ind. Eng. Chem. Res., 36 (1997) 2766–2774.
- J. Jiao, Y. Zheng, G. Sun, J. Wang, Study of the separation
efficiency and flow field of a dynamic cyclone, Sep. Purif.
Technol., 49 (2006) 157–166.
- C.J. Stairmand, The design and performance of cyclone
separators, Ind. Eng. Chem., 29 (1951) 356–383.
- A. Avci, I. Karagoz, Theoretical investigation of pressure losses
in cyclone separators, Int. Commun. Heat Mass Transfer, 28
(2001) 107–117.
- E. Muschelknautz, M. Trefz, Design and Calculation of Higher
and Highest Loaded Gas Cyclones, Proceedings of Second
World Congress on Particle Technology, 1990, pp. 52–71.
- J. Chen, M. Shi, A universal model to calculate cyclone pressure
drop, Powder Technol., 171 (2007) 184–191.
- B. Zhao, A theoretical approach to pressure drop across cyclone
separators, Chem. Eng. Technol., 27 (2004) 1105–1108.
- C.B. Shepherd, C.E. Lapple, Flow pattern and pressure drop in
cyclone dust collectors, Ind. Eng. Chem., 31 (1939) 972–984.
- R.K. Sinnott, Chemical Engineering Design, Elsevier Science,
Oxford, 2005.
- K. Elsayed, C. Lacor, Optimization of the cyclone separator
geometry for minimum pressure drop using mathematical
models and CFD simulations, Chem. Eng. Sci., 65 (2010)
6048–6058.
- J.S. Cowpe, J.S. Astin, R.D. Pilkington, A.E. Hill, Application
of response surface methodology to laser-induced breakdown
spectroscopy: influences of hardware configuration,
Spectrochim. Acta, Part B, 62 (2007) 1335–1342.
- G.E.P. Box, K.B. Wilson, On the experimental attainment of
optimum conditions, J. R. Stat. Soc., 13 (1951) 1–45.
- Z. Michalevicz, Genetic Algorithms + Data Structures =
Evolution Programs, Springer, New York, 1992.
- C.R. Reeves, Genetic algorithms for the operation researcher,
INFORMS J. Comput., 9 (1997) 231–250.
- G. Gronald, J.J. Derksen, Simulating turbulent swirling flow in
a gas cyclone: a comparison of various modeling approaches,
Powder Technol., 205 (2011) 160–171.
- B.E. Launder, N. Shima, Second-moment closure for the nearwall
sub layer: development and application, AIAA J., 27 (1989)
1319–1325.
- M.M. Gibson, B.E. Launder, Ground effects on pressure
fluctuations in the atmospheric boundary layer, J. Fluid Mech.,
86 (1978) 491–511.
- S. Fu, B.E. Launder, M.A. Leschziner, Modeling Strongly
Swirling Recirculating Jet Flow with Reynolds-Stress Transport
Closures, Sixth Symposium on Turbulent Shear Flows,
Toulouse, France, 1987.
- B.E. Launder, D.B. Spalding, The numerical computation of
turbulent flows, Comput. Methods Appl. Mech. Eng., 3 (1974)
269–289.
- Fluent, Inc., Fluent 6.1.22 Users’ Guide, 2004.
- B. Zhao, Y. Su, J. Zhang, Simulation of gas flow pattern and
separation efficiency in cyclone with conventional single and
spiral double inlet configuration, Chem. Eng. Res. Des., 84
(2006) 1158–1165.
- S.A. Morsi, A.J. Alexander, An investigation of particle
trajectories in two phase flow systems, J. Fluid Mech., 55 (1972)
193–208.