References
- L.J. Kennedy, J.J. Vijaya, K. Kayalvizhi, G. Sekaran, Adsorption
of phenol from aqueous solutions using mesoporous carbon
prepared by two-stage process, Chem. Eng. J., 132 (2007) 279–287.
- C. Michailof, G.G. Stavropoulos, C. Panayiotou, Enhanced
adsorption of phenolic compounds, commonly encountered in
olive mill wastewaters, on olive husk derived activated carbons,
Bioresour. Technol., 99 (2008) 6400–6408.
- R.M. Bruce, J. Santodonato, M.W. Neal, Summary review of the
health effects associated with phenol: health issue assessment,
Toxicol. Ind. Health, 3 (1987) 535–568.
- US Environmental Protection Agency, Technical Support
Document for Water Quality-based Toxics Control [Internet], 1985,
Available at: http://www3.epa.gov/npdes/pubs/owm0264.pdf.
- M. Loredo-Cancino, E. Soto-Regalado, R.B. García-Reyes,
F.J. Cerino-Córdova, M.T. Garza-González, M.M. Alcalá-Rodríguez, Adsorption and desorption of phenol onto barley
husk-activated carbon in an airlift reactor, Desal. Wat. Treat., 57
(2014) 1–16.
- N. Tancredi, N. Medero, F. Möller, J. Píriz, C. Plada, T. Cordero,
Phenol adsorption onto powdered and granular activated
carbon prepared from Eucalyptus wood, J. Colloid Interface
Sci., 279 (2004) 357–363.
- A. Aygün, S. Yenisoy-Karakaş, I. Duman, Production of granular
activated carbon from fruit stones and nutshells and evaluation
of their physical, chemical and adsorption properties, Micropor.
Mesopor. Mater., 66 (2003) 189–195.
- M. Ahmedna, W. Marshall, R. Rao, Production of granular
activated carbons from select agricultural by-products and
evaluation of their physical, chemical and adsorption properties,
Bioresour. Technol., 71 (2000) 113–123.
- R.R. Bansode, J.N. Losso, W.E. Marshall, R.M. Rao, R.J. Portier,
Adsorption of volatile organic compounds by pecan shell- and
almond shell-based granular activated carbons, Bioresour.
Technol., 90 (2003) 175–184.
- K.P. Singh, A. Malik, S. Sinha, P. Ojha, Liquid-phase adsorption
of phenols using activated carbons derived from agricultural
waste material, J. Hazard. Mater., 150 (2008) 626–641.
- Y. Chen, Y. Zhu, Z. Wang, Y. Li, L. Wang, L. Ding, Application
studies of activated carbon derived from rice husks produced
by chemical-thermal process – a review, Adv. Colloid Interface
Sci., 163 (2011) 39–52.
- M. Zahoor, Removal of crystal violet from water by adsorbent
prepared from Turkish coffee residue, Tenside Surfactants
Deterg., 49 (2012) 107–113.
- US Department of Agriculture, Coffee: World Markets and
Trade [Internet], USDA, 2017, Available at: https://apps.fas.usda.gov/psdonline/circulars/coffee.pdf
- M. Loredo-Cancino, E. Soto-Regalado, F.J. Cerino-Córdova,
R.B. García-Reyes, A.M. García-León, M.T. Garza-González,
Determining optimal conditions to produce activated carbon
from barley husks using single or dual optimization, J. Environ.
Manage., 125 (2013) 117–125.
- ASTM International, Standard Practice for Proximate Analysis
of Coal and Coke, West Conshohocken, PA, Standard No.
ASTM D3172 – 13, 2007.
- H.P. Bohem, Chemical Identification of Surface Groups, D.D.
Eley, H. Pines, P.B. Weisz, Eds., Advances in Catalysis, Academic
Press, 1966, pp. 179–274.
- R.B. Garcia-Reyes, J.R. Rangel-Mendez, Adsorption kinetics
of chromium(III) ions on agro-waste materials, Bioresour.
Technol., 101 (2010) 8099–8108.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- H. Freundlich, Über die Adsorption in Lösungen [adsorption in
solution], Wilhelm Engelmann, Leipzig, 1906, German.
- O. Redlich, D.L. Peterson, A useful adsorption isotherm, J. Phys.
Chem., 63 (1959) 1024.
- S.I. Mussatto, E.M.S. Machado, S. Martins, J.A. Teixeira,
Production, composition, and application of coffee and its
industrial residues, Food Bioprocess Technol., 4 (2011) 661–672.
- T.H. Liou, Development of mesoporous structure and high
adsorption capacity of biomass-based activated carbon by
phosphoric acid and zinc chloride activation, Chem. Eng. J., 158
(2010) 129–142.
- R. Leyva Ramos, Chapter V: Importancia y aplicaciones de
la adsorción en fase líquida [Importance and applications
of liquid phase adsorption], In: J.C. Moreno-Piraján, Ed.,
Sólidos Porosos: Preparación, Caracterización y Aplicaciones
[Porous solids: preparation, characterization and applications],
Ediciones Uniandes, 2007, pp. 155–207. Spanish.
- P.E. Diaz-Flores, R. Leyva-Ramos, R.M. Guerrero-Coronado,
J. Mendoza-Barron, Adsorption of pentachlorophenol from
aqueous solution onto activated carbon fiber, Ind. Eng. Chem.
Res., 45 (2006) 330–336.
- B.M. Babic, S.K. Milonjic, M.J. Polovina, B.V. Kaludierovic, Point
of zero charge and intrinsic equilibrium constants of activated
carbon cloth, Carbon, 37 (1999) 477–481.
- D. Minguang, The effect of zeta potential of activated carbon
on the adsorption of dyes from aqueous solution, J. Colloid
Interface Sci., 164 (1994) 223–228.
- J.W. Shim, S.J. Park, S.K. Ryu, Effect of modification with HNO3
and NaOH on metal adsorption by pitch-based activated carbon
fibers, Carbon, 39 (2001) 1635–1642.
- Y. A. Alhamed, Adsorption kinetics and performance of packed
bed adsorber for phenol removal using activated carbon from
dates’ stones, J. Hazard. Mater., 170 (2009) 763–770.
- W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from
solution, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89 (1963) 31–59.
- F.C. Wu, R.L. Tseng, R.S. Juang, Initial behavior of intraparticle
diffusion model used in the description of adsorption kinetics,
Chem. Eng. J., 153 (2009) 1–8.
- B. Ozkaya, Adsorption and desorption of phenol on activated
carbon and a comparison of isotherm models, J. Hazard. Mater.,
129 (2006) 158–163.
- S.J. Kulkarni, S. Gadgebaba, J.P. Kaware, Desorption studies for
low cost adsorbents, Int. J. Chem. Stud., 3 (2015) 38–41.
- S. Suresh, V. Srivastava, I. Mishra, Studies of adsorption kinetics
and regeneration of aniline, phenol, 4-chlorophenol and
4-nitrophenol by activated carbon, Chem. Ind. Chem. Eng. Q.,
19 (2013) 195–212.