References

  1. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712–717.
  2. M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it?, Energy Environ. Sci., 8 (2015) 2296–2319.
  3. X.Z. Wang, M.G. Li, Y.W. Chen, R.M. Cheng, S.M. Huang, L.K. Pan, Z. Sun, Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers composite film electrodes, Appl. Phys. Lett., 89 (2006) 053127.
  4. C. Nie, L. Pan, H. Li, T. Chen, T. Lu, Z. Sun, Electrophoretic deposition of carbon nanotubes film electrodes for capacitive deionization, J. Electroanal. Chem., 666 (2012) 85–88.
  5. C.H. Hou, C.Y. Huang, A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization, Desalination, 314 (2013) 124–129.
  6. B. Jia, W. Zhang, Preparation and application of electrodes in capacitive deionization (CDI): a state-of-art review, Nanoscale Res. Lett., 11 (2016) 1–25.
  7. Z. Peng, D. Zhang, T. Yan, J. Zhang, L. Shi, Three-dimensional micro/mesoporous carbon composites with carbon nanotube networks for capacitive deionization, Appl. Surf. Sci., 282 (2013) 965–973.
  8. C. Tsouris, R. Mayes, J. Kiggans, K. Sharma, S. Yiacoumi, D. DePaoli, S. Dai, Mesoporous carbon for capacitive deionization of saline water, Environ. Sci. Technol., 45 (2011) 10243–10249.
  9. X. Xu, L. Pan, Y. Liu, T. Lu, Z. Sun, Enhanced capacitive deionization performance of graphene by nitrogen doping, J. Colloid Interface Sci., 445 (2015) 143–150.
  10. G. Wang, Q. Dong, T. Wu, D. Zhan, M. Zhou, J. Qiu, Ultrasoundassisted preparation of electrospun carbon fiber/graphene electrodes for capacitive deionization: importance and unique role of electrical conductivity, Carbon, 103 (2016) 311–317.
  11. L. Wang, M. Wang, Z.H. Huang, T. Cui, X. Gui, F. Kang, K. Wang, D. Wu, Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes, J. Mater. Chem., 21 (2011) 18295–18299.
  12. A.S. Yasin, H.O. Mohamed, I.M.A. Mohamed, H.M. Mousa, N.A.M. Barakat, Enhanced desalination performance of capacitive deionization using zirconium oxide nanoparticlesdoped graphene oxide as a novel and effective electrode, Sep. Purif. Technol., 171 (2016) 34–43.
  13. K.L. Yang, S. Yiacoumi, C. Tsouris, Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry, J. Electroanal. Chem., 540 (2003) 159–167.
  14. S. Chung, H. Kang, J.D. Ocon, J.K. Lee, J. Lee, Enhanced electrical and mass transfer characteristics of acid-treated carbon nanotubes for capacitive deionization, Curr. Appl. Phys., 15 (2015) 1539–1544.
  15. H. Li, S. Liang, M. Gao, G. Li, J. Li, L. He, The study of capacitive deionization behavior of a carbon nanotube electrode from the perspective of charge efficiency, Water Sci. Technol., 71 (2015) 83–88.
  16. Y. Liu, J. Ma, T. Lu, L. Pan, Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization, Sci. Rep., 6 (2016) 32784.
  17. J. Yang, L. Zou, N.R. Choudhury, Ion-selective carbon nanotube electrodes in capacitive deionisation, Electrochim. Acta, 91 (2013) 11–19.
  18. G. Wei, S. Chen, X. Fan, X. Quan, H. Yu, Carbon nanotube hollow fiber membranes: high-throughput fabrication, structural control and electrochemically improved selectivity, J. Membr. Sci., 493 (2015) 97–105.
  19. B. He, N.A. Patankar, J. Lee, Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces, Langmuir, 19 (2003) 4999–5003.
  20. Y.S. Li, J.L. Liao, S.Y. Wang, W.H. Chiang, Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons, Sci. Rep., 6 (2016) 22755.
  21. S. Song, S. Jiang, Selective catalytic oxidation of ammonia to nitrogen over CuO/CNTs: the promoting effect of the defects of CNTs on the catalytic activity and selectivity, Appl. Catal., B, 117–118 (2012) 346–350.
  22. B.H. Park, J.H. Choi, Improvement in the capacitance of a carbon electrode prepared using water-soluble polymer binder for a capacitive deionization application, Electrochim. Acta, 55 (2010) 2888–2893.
  23. X. Du, P. Guo, H. Song, X. Chen, Graphene nanosheets as electrode material for electric double-layer capacitors, Electrochim. Acta, 55 (2010) 4812–4819.
  24. S.C. Yang, J. Choi, J. Yeo, S. Jeon, H. Park, D.K. Kim, Flowelectrode capacitive deionization using an aqueous electrolyte with a high salt concentration, Environ. Sci. Technol., 50 (2016) 5892–5899.
  25. N.-L. Liu, S. Dutta, R.R. Salunkhe, T. Ahamad, S.M. Alshehri, Y. Yamauchi, C.-H. Hou, K.C.-W. Wu, ZIF-8 derived, nitrogendoped porous electrodes of carbon polyhedron particles for high-performance electrosorption of salt ions, Sci. Rep., 6 (2016) 28847.
  26. Y. Qu, T.F. Baumann, J.G. Santiago, M. Stadermann, Characterization of resistances of a capacitive deionization system, Environ. Sci. Technol., 49 (2015) 9699–9706.
  27. C. Lei, F. Markoulidis, Z. Ashitaka, C. Lekakou, Reduction of porous carbon/Al contact resistance for an electric double-layer capacitor (EDLC), Electrochim. Acta, 92 (2013) 183–187.
  28. H.-C. Wu, Y.-P. Lin, E. Lee, W.-T. Lin, J.-K. Hu, H.-C. Chen, N.-L. Wu, High-performance carbon-based supercapacitors using Al current-collector with conformal carbon coating, Mater. Chem. Phys., 117 (2009) 294–300.
  29. F. Xing, T. Li, J. Li, H. Zhu, N. Wang, X. Cao, Chemically exfoliated MoS2 for capacitive deionization of saline water, Nano Energy, 31 (2017) 590–595.
  30. Y. Liu, L. Pan, X. Xu, T. Lu, Z. Sun, D.H.C. Chua, Carbon nanorods derived from natural based nanocrystalline cellulose for highly efficient capacitive deionization, J. Mater. Chem. A, 2 (2014) 20966–20972.
  31. X. Xu, Y. Liu, T. Lu, Z. Sun, D.H.C. Chua, L. Pan, Rational design and fabrication of graphene/carbon nanotubes hybrid sponge for high-performance capacitive deionization, J. Mater. Chem. A, 3 (2015) 13418–13425.
  32. J. Landon, X. Gao, B. Kulengowski, J.K. Neathery, K. Liu, Impact of pore size characteristics on the electrosorption capacity of carbon xerogel electrodes for capacitive deionization, J. Electrochem. Soc., 159 (2012) A1861–A1866.