References
- M. Elimelech, W.A. Phillip, The future of seawater desalination:
energy, technology, and the environment, Science, 333 (2011)
712–717.
- M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V.
Presser, Water desalination via capacitive deionization: what
is it and what can we expect from it?, Energy Environ. Sci., 8
(2015) 2296–2319.
- X.Z. Wang, M.G. Li, Y.W. Chen, R.M. Cheng, S.M. Huang, L.K.
Pan, Z. Sun, Electrosorption of ions from aqueous solutions with
carbon nanotubes and nanofibers composite film electrodes,
Appl. Phys. Lett., 89 (2006) 053127.
- C. Nie, L. Pan, H. Li, T. Chen, T. Lu, Z. Sun, Electrophoretic
deposition of carbon nanotubes film electrodes for capacitive
deionization, J. Electroanal. Chem., 666 (2012) 85–88.
- C.H. Hou, C.Y. Huang, A comparative study of electrosorption
selectivity of ions by activated carbon electrodes in capacitive
deionization, Desalination, 314 (2013) 124–129.
- B. Jia, W. Zhang, Preparation and application of electrodes in
capacitive deionization (CDI): a state-of-art review, Nanoscale
Res. Lett., 11 (2016) 1–25.
- Z. Peng, D. Zhang, T. Yan, J. Zhang, L. Shi, Three-dimensional
micro/mesoporous carbon composites with carbon nanotube
networks for capacitive deionization, Appl. Surf. Sci., 282 (2013)
965–973.
- C. Tsouris, R. Mayes, J. Kiggans, K. Sharma, S. Yiacoumi, D.
DePaoli, S. Dai, Mesoporous carbon for capacitive deionization
of saline water, Environ. Sci. Technol., 45 (2011) 10243–10249.
- X. Xu, L. Pan, Y. Liu, T. Lu, Z. Sun, Enhanced capacitive
deionization performance of graphene by nitrogen doping, J.
Colloid Interface Sci., 445 (2015) 143–150.
- G. Wang, Q. Dong, T. Wu, D. Zhan, M. Zhou, J. Qiu, Ultrasoundassisted
preparation of electrospun carbon fiber/graphene
electrodes for capacitive deionization: importance and unique
role of electrical conductivity, Carbon, 103 (2016) 311–317.
- L. Wang, M. Wang, Z.H. Huang, T. Cui, X. Gui, F. Kang, K.
Wang, D. Wu, Capacitive deionization of NaCl solutions using
carbon nanotube sponge electrodes, J. Mater. Chem., 21 (2011)
18295–18299.
- A.S. Yasin, H.O. Mohamed, I.M.A. Mohamed, H.M. Mousa,
N.A.M. Barakat, Enhanced desalination performance of
capacitive deionization using zirconium oxide nanoparticlesdoped
graphene oxide as a novel and effective electrode, Sep.
Purif. Technol., 171 (2016) 34–43.
- K.L. Yang, S. Yiacoumi, C. Tsouris, Electrosorption capacitance of
nanostructured carbon aerogel obtained by cyclic voltammetry,
J. Electroanal. Chem., 540 (2003) 159–167.
- S. Chung, H. Kang, J.D. Ocon, J.K. Lee, J. Lee, Enhanced
electrical and mass transfer characteristics of acid-treated
carbon nanotubes for capacitive deionization, Curr. Appl.
Phys., 15 (2015) 1539–1544.
- H. Li, S. Liang, M. Gao, G. Li, J. Li, L. He, The study of capacitive
deionization behavior of a carbon nanotube electrode from the
perspective of charge efficiency, Water Sci. Technol., 71 (2015)
83–88.
- Y. Liu, J. Ma, T. Lu, L. Pan, Electrospun carbon nanofibers
reinforced 3D porous carbon polyhedra network derived from
metal-organic frameworks for capacitive deionization, Sci.
Rep., 6 (2016) 32784.
- J. Yang, L. Zou, N.R. Choudhury, Ion-selective carbon nanotube
electrodes in capacitive deionisation, Electrochim. Acta, 91
(2013) 11–19.
- G. Wei, S. Chen, X. Fan, X. Quan, H. Yu, Carbon nanotube
hollow fiber membranes: high-throughput fabrication,
structural control and electrochemically improved selectivity,
J. Membr. Sci., 493 (2015) 97–105.
- B. He, N.A. Patankar, J. Lee, Multiple equilibrium droplet
shapes and design criterion for rough hydrophobic surfaces,
Langmuir, 19 (2003) 4999–5003.
- Y.S. Li, J.L. Liao, S.Y. Wang, W.H. Chiang, Intercalation-assisted
longitudinal unzipping of carbon nanotubes for green and
scalable synthesis of graphene nanoribbons, Sci. Rep., 6 (2016)
22755.
- S. Song, S. Jiang, Selective catalytic oxidation of ammonia to
nitrogen over CuO/CNTs: the promoting effect of the defects
of CNTs on the catalytic activity and selectivity, Appl. Catal., B,
117–118 (2012) 346–350.
- B.H. Park, J.H. Choi, Improvement in the capacitance of a
carbon electrode prepared using water-soluble polymer binder
for a capacitive deionization application, Electrochim. Acta, 55
(2010) 2888–2893.
- X. Du, P. Guo, H. Song, X. Chen, Graphene nanosheets
as electrode material for electric double-layer capacitors,
Electrochim. Acta, 55 (2010) 4812–4819.
- S.C. Yang, J. Choi, J. Yeo, S. Jeon, H. Park, D.K. Kim, Flowelectrode
capacitive deionization using an aqueous electrolyte
with a high salt concentration, Environ. Sci. Technol., 50 (2016)
5892–5899.
- N.-L. Liu, S. Dutta, R.R. Salunkhe, T. Ahamad, S.M. Alshehri,
Y. Yamauchi, C.-H. Hou, K.C.-W. Wu, ZIF-8 derived, nitrogendoped
porous electrodes of carbon polyhedron particles for
high-performance electrosorption of salt ions, Sci. Rep., 6 (2016)
28847.
- Y. Qu, T.F. Baumann, J.G. Santiago, M. Stadermann,
Characterization of resistances of a capacitive deionization
system, Environ. Sci. Technol., 49 (2015) 9699–9706.
- C. Lei, F. Markoulidis, Z. Ashitaka, C. Lekakou, Reduction of
porous carbon/Al contact resistance for an electric double-layer
capacitor (EDLC), Electrochim. Acta, 92 (2013) 183–187.
- H.-C. Wu, Y.-P. Lin, E. Lee, W.-T. Lin, J.-K. Hu, H.-C. Chen, N.-L.
Wu, High-performance carbon-based supercapacitors using Al
current-collector with conformal carbon coating, Mater. Chem.
Phys., 117 (2009) 294–300.
- F. Xing, T. Li, J. Li, H. Zhu, N. Wang, X. Cao, Chemically
exfoliated MoS2 for capacitive deionization of saline water,
Nano Energy, 31 (2017) 590–595.
- Y. Liu, L. Pan, X. Xu, T. Lu, Z. Sun, D.H.C. Chua, Carbon
nanorods derived from natural based nanocrystalline cellulose
for highly efficient capacitive deionization, J. Mater. Chem. A, 2
(2014) 20966–20972.
- X. Xu, Y. Liu, T. Lu, Z. Sun, D.H.C. Chua, L. Pan, Rational
design and fabrication of graphene/carbon nanotubes hybrid
sponge for high-performance capacitive deionization, J. Mater.
Chem. A, 3 (2015) 13418–13425.
- J. Landon, X. Gao, B. Kulengowski, J.K. Neathery, K. Liu, Impact
of pore size characteristics on the electrosorption capacity
of carbon xerogel electrodes for capacitive deionization, J.
Electrochem. Soc., 159 (2012) A1861–A1866.