References
- F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:
a review, J. Environ. Manage., 92 (2011) 407–418.
- N.K. Srivastava, C.B. Majumder, Novel biofiltration methods
for the treatment of heavy metals from industrial wastewater, J.
Hazard. Mater., 151 (2008) 1–8.
- US Environmental Protection Agency (EPA), Control and
Treatment Technology for the Metal Finishing Industry, Sulfide
Precipitation, Summary Report, EPA-625/8-80/003, Washington,
D.C., USA, 1980.
- S. Babel, T.A. Kurniawan, Cr(VI) removal from synthetic
wastewater using coconut shell charcoal and commercial
activated carbon modified with oxidizing agents and/or
chitosan, Chemosphere, 54 (2004) 951–967.
- T.A. Kurniawan, G.Y.S. Chan, W.-H. Lo, S. Babel, Physico–chemical treatment techniques for wastewater laden with heavy
metals, Chem. Eng. J., 118 (2006) 83–98.
- M.A. Barakat, New trends in removing heavy metals from
industrial wastewater, Arab. J. Chem., 4 (2011) 361–377.
- M. Paul, S.D. Jons, Chemistry and fabrication of polymeric
nanofiltration membranes: a review, Polymer, 103 (2016)
417–456.
- H. Lee, Y. Jin, S. Hong, Recent transitions in ultrapure water
(UPW) technology: rising role of reverse osmosis (RO),
Desalination, 399 (2016) 185–197.
- C. Ferreira, A. Ribeiro, L. Ottosen, Effect of major constituents
of MSW fly ash during electrodialytic remediation of heavy
metals, Sep. Sci. Technol., 40 (2005) 2007–2019.
- J. Huang, G. Zeng, K. Xu, Y. Fang, Removal of cadmium ions
from aqueous solution via micellar-enhanced ultrafiltration,
Trans. Nonferrous Met. Soc. China, 15 (2005) 184–189.
- M.A. Monem El Zeftawy, C.N. Mulligan, Use of rhamnolipid
to remove heavy metals from wastewater by micellar-enhanced
ultrafiltration (MEUF), Sep. Purif. Technol., 77 (2011) 120–127.
- M.A. Barakat, E. Schmidt, Polymer-enhanced ultrafiltration
process for heavy metals removal from industrial wastewater,
Desalination, 256 (2010) 90–93.
- N. Yin, K. Wang, L. Wang, Z. Li, Amino-functionalized MOFs
combining ceramic membrane ultrafiltration for Pb(II) removal,
Chem. Eng. J., 306 (2016) 619–628.
- K.G. Bhattacharyya, S.S. Gupta, Kaolinite, montmorillonite, and
their modified derivatives as adsorbents for removal of Cu(II)
from aqueous solution, Sep. Purif. Technol., 50 (2006) 388–397.
- W. Zou, R. Han, Z. Chen, Z. Jinghua, J. Shi, Kinetic study of
adsorption of Cu(II) and Pb(II) from aqueous solutions using
manganese oxide coated zeolite in batch mode, Colloids Surf.,
A, 279 (2006) 238–246.
- V.J. Inglezakis, M.A. Stylianou, D. Gkantzou, M.D. Loizidou,
Removal of Pb(II) from aqueous solutions by using clinoptilolite
and bentonite as adsorbents, Desalination, 210 (2007) 248–256.
- M. Delkash, B.E. Bakhshayesh, H. Kazemian, Using zeolitic
adsorbents to clean up special wastewater streams: a review,
Micropor. Mesopor. Mater., 214 (2015) 224–241.
- M. Visa, Synthesis and characterization of new zeolite materials
obtained from fly ash for heavy metals removal in advanced
wastewater treatment, Powder Technol., 294 (2016) 338–347.
- G.P.C. Rao, S. Satyaveni, A. Ramesh, K. Seshaiah, K.S.N. Murthy,
N.V. Choudary, Sorption of cadmium and zinc from aqueous
solutions by zeolite 4A, zeolite 13X and bentonite, J. Environ.
Manage., 81 (2006) 265–272.
- S. Yang, D. Zhao, H. Zhang, S. Lu, L. Chen, X. Yu, Impact of
environmental conditions on the sorption behavior of Pb(II)
in Na-bentonite suspensions, J. Hazard. Mater., 183 (2010)
632–640.
- M. Alexandre-Franco, A. Albarrán-Liso, V. Gómez-Serrano, An
identification study of vermiculites and micas, Fuel Process.
Technol., 92 (2011) 200–205.
- S. Gharin Nashtifan, A. Azadmehr, A. Maghsoudi, Comparative
and competitive adsorptive removal of Ni2+ and Cu2+ from
aqueous solution using iron oxide-vermiculite composite, Appl.
Clay Sci., 140 (2017) 38–49.
- B. Lu, X. Du, S. Huang, The economic and environmental
implications of wastewater management policy in China:
from the LCA perspective, J. Cleaner Prod., 142 (2017)
3544–3557.
- European Comission, The ILCD Handbook, Analysis of Existing
Environmental Impact Assessment Methodologies for Use in
Life Cycle Assessment, European Commission, Joint Research
Centre, Institute for Environment and Sustainability, Ispra and
Brussels, 2010.
- S.E. Taelman, S. De Meester, T. Schaubroeck, E. Sakshaug,
R.A.F. Alvarenga, J. Dewulf, Accounting for the occupation
of the marine environment as a natural resource in life cycle
assessment: an exergy based approach, Resour. Conserv.
Recycl., 91(2014) 1–10.
- E. Katsou, S. Malamis, K.J. Haralambous, Industrial wastewater
pre-treatment for heavy metal reduction by employing a
sorbent-assisted ultrafiltration system, Chemosphere, 82 (2011)
557–564.
- N. Sato, Chemical Energy and Exergy, Elsevier Science &
Technology Books, Japan, 2004.
- J. Szargut, Anthropogenic and natural exergy losses (exergy
balance of the earth’s surface and atmosphere), Energy, 28
(2002) 1047–1054.
- D. Morris, J. Szargut, Standard chemical exergy of some
elements and compounds on the planet earth, Energy, 11 (1986)
733–755.
- G.Q. Chen, Exergy consumption of the earth, Ecol. Modell., 184
(2005) 363–380.
- L.Q. Huang, G.Q. Chen, Y. Zhang, B. Chen, S.J. Luan, Exergy
as a unified measure of water quality, Commun. Nonlinear Sci.
Numer. Simul., 12 (2007) 663–672.
- G.Q. Chen, X. Ji, Chemical exergy based evaluation of water
quality, Ecol. Modell., 200 (2007) 259–268.
- A. Martínez, J. Uche, Chemical exergy assessment of organic
matter in a water flow, Energy, 35 (2010) 77–84.
- L. Shao, G.Q. Chen, Exergy based renewability assessment: case
study to ecological wastewater treatment, Ecol. Indic., 58 (2015)
392–401.
- L. Fitzsimons, M. Horrigan, G. McNamara, E. Doherty, T.
Phelan, B. Corcoran, Y. Delauré, E. Clifford, Benchmarking the
thermodynamic performance of Irish municipal wastewater
treatment plants using exergy analysis, J. Cleaner Prod., 131
(2016) 387–398.
- B.R. Bakshi, T.G. Gutowski, D.P. Sekulic, Thermodynamics
and the Destruction of Resources, Cambridge University Press,
New York, USA, 2011.