References

  1. D.R. Lovley, Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy, Rev. Environ. Sci. Biotechnol., 10 (2011) 101–105.
  2. F. Liu, A.E. Rotaru, P.M. Shrestha, N.S. Malvankar, K.P. Nevin, D.R. Lovley, Promoting direct interspecies electron transfer with activated carbon, Energy Environ. Sci., 5 (2012) 8982–8989.
  3. S. Chen, A.E. Rotaru, F. Liu, J. Philips, T.L. Woodard, K.P. Nevin, D.R. Lovley, Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures, Bioresour. Technol., 173 (2014) 82–86.
  4. H. Li, J. Chang, P. Liu, L. Fu, D. Ding, Y. Lu, Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments, Environ. Microbiol., 17 (2015) 1533–1547.
  5. L.L. Li, Z.H. Tong, C.Y. Fang, J. Chu, H.Q. Yu, Response of anaerobic granular sludge to single-wall carbon nanotube exposure, Water Res., 70 (2015) 1–8.
  6. L. Zhuang, J. Tang, Y. Wang, M. Hu, S. Zhou, Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation, J. Hazard. Mater., 293 (2015) 37–45.
  7. C. Yamada, S. Kato, Y. Ueno, M. Ishii, Y. Igarashi, Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate, J. Biosci. Bioeng., 119 (2015) 678–682.
  8. D. Zhu, J. Wang, T.H. Chen, J. Tan, D.F. Yao, Comparison of hematite-facilitated anaerobic digestion of acetate and beef extract, Environ. Technol., 36 (2015) 2295–2299.
  9. A.E. Rotaru, P.M. Shrestha, F. Liu, B. Markovaite, S. Chen, K.P. Nevin, D.R. Lovley, Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri, Appl. Environ. Microbiol., 80 (2014) 4599–4605.
  10. M. Morita, N.S. Malvankar, A.E. Franks, Z.M. Summers, L. Giloteaux, A.E. Rotaru, C. Rotaru, D.R. Lovley, Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates, MBio., 2 (2011) e00159–11.
  11. P.M. Shrestha, N.S. Malvankar, J.J. Werner, A.E. Franks, A.E. Rotaru, M. Shrestha, F. Liu, K.P. Nevin, L.T. Angenent, D.R. Lovley, Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment, Bioresour. Technol., 174 (2014) 306–310.
  12. APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C., 1995.
  13. M. Zwietering, I. Jongenburger, F. Rombouts, K.V. Riet, Modeling of the bacterial growth curve, Appl. Environ. Microbiol., 56 (1990) 1875–1881.
  14. F. Guo, T. Zhang, Profiling bulking and foaming bacteria in activated sludge by high throughput sequencing, Water Res., 46 (2012) 2772–2782.
  15. V.C. Cruz, S. Rossetti, S. Fazi, P. Paiano, M. Majone, F. Aulenta, Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation, Environ. Sci. Technol., 48 (2014) 7536–7543.
  16. C. Luo, F. Lu, L. Shao, P. He, Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes, Water Res., 68 (2015) 710–718.
  17. A.E. Rotaru, P.M. Shrestha, F. Liu, M. Shrestha, D. Shrestha, M. Embree, K. Zengler, C. Wardman, K.P. Nevin, D.R. Lovley, A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane, Energy Environ. Sci., 7 (2014) 408–415.
  18. K. Kampmann, S. Ratering, I. Kramer, M. Schmidt, W. Zerr, S. Schnell, Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates, Appl. Environ. Microbiol., 78 (2012) 2106–2119.
  19. Z. Zhao, Y. Zhang, X. Quan, H. Zhao, Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell, Bioresour. Technol., 200 (2016) 235–244.