References

  1. V.K. Tyagi, S.L. Lo, Sludge: a waste or renewable source for energy and resources recovery? Renew. Sustain. Energy Rev., 25 (2013) 708–728.
  2. S. Dufreche, R. Hernandez, T. French, D. Sparks, M. Zappi, E. Alley, Extraction of lipids from municipal wastewater plant microorganisms for production of biodiesel, J. Am. Oil Chem. Soc., 84 (2007) 181–187.
  3. C. Pastore, A. Lopez, V. Lotito, G. Mascolo, Biodiesel from dewatered wastewater sludge: a two-step process for a more advantageous production, Chemosphere, 92 (2013) 667–673.
  4. M. Olkiewicz, A. Fortuny, F. Stüber, A. Fabregat, J. Font, C. Bengoa, Effects of pre-treatments on the lipid extraction and biodiesel production from municipal WWTP sludge, Fuel, 141 (2015) 250–257.
  5. A. Mondala, R. Hernandez, T. French, L. McFarland, J. Domingo, M. Meckes, H. Ryu, B. Iker, Enhanced lipid and biodiesel production from glucose-fed activated sludge: kinetics and microbial community analysis, AIChE J., 58 (2012) 1279–1290.
  6. A. Mondala, R. Hernandez, W. Holmes, T. French, L. McFarland, D. Sparks, M. Haque, Enhanced microbial oil production by activated sludge microorganisms via co-fermentation of glucose and xylose, AIChE J., 59 (2013) 4036–4044.
  7. A. Mondala, R. Hernandez, T. French, M. Green, L. McFarland, L. Ingram, Enhanced microbial oil production by activated sludge microorganisms from sugarcane bagasse hydrolyzate, Renew. Energy, 78 (2015) 114–118.
  8. Q. Sun, A.J. Li, M.X. Li, B.L. Hou, Effect of pH on biodiesel production and the microbial structure of glucose-fed activated sludge, Int. Biodeterior. Biodegrad., 104 (2015) 224–230.
  9. Y. Liu, J.H. Tay, State of the art of biogranulation technology for wastewater treatment, Biotechnol. Adv., 22 (2004) 533–563.
  10. K.Z. Su, H.Q. Yu, Formation and characterization of aerobic granules in a sequencing batch reactor treating soybeanprocessing wastewater, Environ. Sci. Technol., 39 (2005) 2818–2827.
  11. A.J. Li, S.F. Yang, X.Y. Li, J.D. Gu, Microbial population dynamics during aerobic sludge granulation at different organic loading rates, Water Res., 42 (2008) 3552–3560.
  12. G. Yilmaz, R. Lemaire, J. Keller, Z.G. Yuan, Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge, Biotechnol. Bioeng., 100 (2008) 529–541.
  13. S.F. Corsino, R. Campo, G.D. Bella, M. Torregrossa, G. Viviani, Cultivation of granular sludge with hypersaline oily wastewater, Int. Biodeterior. Biodegrad., 105 (2015) 192–202.
  14. N. Schwarzenbeck, J.M. Borges, P.A. Wilderer, Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor, Appl. Microbiol. Biotechnol., 66 (2005) 711–718.
  15. S.G. Wang, X.W. Liu, W.X. Gong, B.Y. Gao, D.H. Zhang, H.Q. Yu, Aerobic granulation with brewery wastewater in a sequencing batch reactor, Bioresour. Technol., 98 (2007) 2142–2147.
  16. A. Mondala, K. Liang, H. Toghiani, R. Hernandez, T. French, Biodiesel production by in situ transesterification of municipal primary and secondary sludges, Bioresour. Technol., 100 (2009) 1203–1210.
  17. M.X. Li, A.J. Li, Q. Sun, X.M. Jiang, S.H. Chen, Enhancement of biodiesel production by cultivating Dipodascaceae moderatedfilamentous granular sludge with sugar-containing wastewater, Int. Biodeterior. Biodegrad., 110 (2016) 38–45.
  18. American Public Health Administration, Standard Methods for the Examination of Water and Wastewater, Washington, 2005.
  19. P. Gerhardt, R.G.E. Murray, W.A. Wood, N.R. Krieg, Methods for General and Molecular Bacteriology, American Society for Microbiology, Washington, 1994.
  20. S. Pinzi, D. Leiva, G. Arzamendi, L.M. Gandia, M.P. Dorado, Multiple response optimization of vegetable oils fatty acid composition to improve biodiesel physical properties, Bioresour. Technol., 102 (2011) 7280–7288.
  21. G. Knothe, Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters, Fuel Process. Technol., 86 (2005) 1059– 1070.
  22. Y.L. Liu, P.G. Xi, X.L. He, Z.D. Jiang, Phialophora avicenniae sp. nov., a new endophytic fungus in Avicennia marina in China, Mycotaxon, 124 (2013) 31–37.
  23. A.C. Richard, Endogenous respiration and fatty acids of Phialophora dermatitidis, Mycologia, 68 (1976) 99–107.
  24. J. Sajbidor, M. Lamacka, E. Breirerova, A. Chrastina, P. Pokreisz, M. Certik, Effect of salt stress on fatty-acid alterations in some strains of Dipodascopsis and Dipodascus spp., World J. Microbiol. Biotechnol., 10 (1994) 184–186.
  25. B. Ferrari, T. Winsley, M. Ji, B. Neilan, Insights into the distribution and abundance of the ubiquitous Candidatus Saccharibacteria phylum following tag pyrosequencing, Sci. Rep., 4 (2014) 1–9. doi: 10.1038/srep03957
  26. H.D. Ariesyady, T. Ito, S. Okabe, Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester, Water Res., 41 (2007) 1554–1568.
  27. S.J. Ma, L.L. Ding, H. Huang, J.J. Geng, K. Xu, Y. Zhang, H.Q. Ren, Effects of DO levels on surface force, cell membrane properties and microbial community dynamics of activated sludge, Bioresour. Technol., 214 (2016) 645–652.
  28. R. Rivas, P. Garcia-Fraile, P.F. Mateos, E. Martinez-Molina, E. Velazquez, Photobacterium halotolerans sp nov., isolated from Lake Martel in Spain, Int. J. Syst. Evol. Microbiol., 56 (2006) 1067–1071.
  29. T.N.R. Srinivas, Y.V. Bhaskar, V. Bhumika, P.A. Kumar, Photobacterium marinum sp nov., a marine bacterium isolated from a sediment sample from Palk Bay, India, Syst. Appl. Microbiol., 36 (2013) 160–165.
  30. J.H. Yoon, J.K. Lee, Y.O. Kim, T.K. Oh, Photobacterium lipolyticum sp nov., a bacterium with lipolytic activity isolated from the Yellow Sea in Korea., Int. J. Syst. Evol. Microbiol., 55 (2005) 335–339.
  31. E. Fautz, G. Rosenfelder, L. Grotjahn, Iso-branched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria, J. Bacteriol., 140 (1979) 852–858.