References

  1. D.K. Bayel, Z. Karaca, V. Onen, A.H. Deliormanli, The relationship between mineral content and flocculant characteristics for slurry waste water recycling at marble processing plants, Mine Water Environ., 35 (2016) 332–336.
  2. C. Capitano, G. Peri, G. Rizzo, Is the Eco-label EU Decision for hard coverings really capable of capturing the environmental performances of the marble productive chain? A field verification by means of a life cycle approach, Int. J. Life Cycle Assess., 19 (2014) 1022–1035.
  3. J.A.H. Oates, Lime and Limestone, Wiley, New York, NY, 1998.
  4. E.I. Arslan, S. Aslan, U. Ipek, S. Altun, S. Yazicioǧlu, Physicochemical treatment of marble processing wastewater and the recycling of its sludge, Waste Manage. Res., 23 (2005) 550–559.
  5. C.Y. Teh, P.M. Budiman, K.P.Y. Shak, T.Y. Wu, Recent advancement of coagulation–flocculation and its application in wastewater treatment, Ind. Eng. Chem. Res., 55 (2016) 4363–4389.
  6. C.Y. Teh, T.Y. Wu, The potential use of natural coagulants and flocculants in the treatment of urban waters, Chem. Eng. Trans., 39 (2014) 1603–1608.
  7. T. Harif, M. Khai, A. Adin, Electrocoagulation versus chemical coagulation: coagulation/flocculation mechanisms and resulting floc characteristics, Water Res., 46 (2012) 3177–3188.
  8. M. Petala, P. Samaras, A. Kungolos, A. Zouboulis, A. Papadopoulos, G.P. Sakellaropoulos, The effect of coagulation on the toxicity and mutagenicity of reclaimed municipal effluents, Chemosphere, 65 (2006) 1007–1018.
  9. J. Duan, J. Gregory, Coagulation by hydrolysing metal salts, Adv. Colloid Interface Sci., 100–102 (2003) 475–502.
  10. C. Wang, A. Alpatova, K.N. McPhedran, M. Gamal El-Din, Coagulation/flocculation process with polyaluminum chloride for the remediation of oil sands process-affected water: performance and mechanism study, J. Environ. Manage., 160 (2015) 254–262.
  11. M. Chowdhury, M.G. Mostafa, T.K. Biswas, A.K. Saha, Treatment of leather industrial effluents by filtration and coagulation processes, Water Resour. Ind., 3 (2013) 11–22.
  12. F. Sher, A. Malik, H. Liu, Industrial polymer effluent treatment by chemical coagulation and flocculation, J. Environ. Chem. Eng., 1 (2013) 684–689.
  13. S. Syafalni, I. Abustan, N. Ismail, T.S. Kwan, Production of bioflocculant by Chryseomonas luteola and its application in dye wastewater treatment, Mod. Appl. Sci., 6 (2012) 13–20.
  14. A.A. Zorpas, I. Voukalli, P. Loizia, Chemical treatment of polluted waste using different coagulants, Desal. Wat. Treat., 45 (2012) 291–296.
  15. A. Domopoulou, X. Spiliotis, G. Charalampides, A. Baklavaridis, G. Papapolymerou, V. Karayannis, Development of tailored ceramic microstructures using recycled marble processing residue as pore-former, IOP Conf. Ser.: Mater. Sci. Eng., 133 (2016) 012030.
  16. V.G. Karayannis, Development of extruded and fired bricks with steel industry byproduct towards circular economy, J. Build. Eng., 7 (2016) 382–387.
  17. A. Zimmer, C.P. Bergmann, Fly ash of mineral coal as ceramic tiles raw material, Waste Manage., 27 (2007) 59–68.
  18. V. Karayannis, A. Moutsatsou, N. Koukouzas, C. Vasilatos, Valorization of CFB-combustion fly ashes as the raw materials in the development of value-added ceramics, Fresenius Environ. Bull., 22 (2013) 3873–3879.
  19. V.G. Karayannis, A.K. Moutsatsou, E.L. Katsika, Recycling of lignite highly-calcareous fly ash into nickel-based composites, Fresenius Environ. Bull., 21 (2012) 2375–2380.
  20. N. Koukouzas, C. Ketikidis, G. Itskos, X. Spiliotis, V. Karayannis, G. Papapolymerou, Synthesis of CFB-coal fly ash clay bricks and their characterisation, Waste Biomass Valorization, 2 (2011) 87–94.
  21. E. Bazrafshan, F.K. Mostafapour, M. Ahmadabadi, A.H. Mahvi, Turbidity removal from aqueous environments by Pistacia atlantica (Baneh) seed extract as a natural organic coagulant aid, Desal. Wat. Treat., 56 (2015) 977–983.
  22. Y.C. Ho, I. Norli, A.F.M. Alkarkhi, N. Morad, Enhanced turbidity removal in water treatment by using emerging vegetal biopolymer composite: a characterization and optimization study, Desal. Wat. Treat., 57 (2016) 1779–1789.
  23. S. Vishali, P. Rashmi, R. Karthikeyan, Evaluation of wasted biomaterial, crab shells (Portunus sanguinolentus), as a coagulant, in paint effluent treatment, Desal. Wat. Treat., 57 (2016) 13157–13165.
  24. X. Huang, B. Gao, Q. Yue, Y. Wang, Q. Li, Characterization and application of a novel inorganic polymer coagulant: polytianium-silicate-chloride, RSC Adv., 6 (2016) 24898–24905.
  25. K.P.Y. Shak, T.Y. Wu, Synthesis and characterization of a plantbased seed gum via etherification for effective treatment of high-strength agro-industrial wastewater, Chem. Eng. J., 307 (2017) 928–938.
  26. T. Ahmed, Z.A. Bhatti, F. Maqbool, Q. Mahmood, Faridullah, S. Qayyum, N. Mushtaq, A comparative study of synthetic and natural coagulants for silver nanoparticles removal from wastewater, Desal. Wat. Treat., 57 (2016) 18718–18723.
  27. S.K. Behera, G. Kalyani, B. Amrita, H.S. Park, Response surface optimization of pH and coagulant dosage for pharmaceutical wastewater pretreatment using alum and bentonite, Desal. Wat. Treat., 57 (2016) 6863–6874.
  28. A. Ezzeddine, A. Bedoui, A. Hannachi, N. Bensalah, Removal of fluoride from aluminum fluoride manufacturing wastewater by precipitation and adsorption processes, Desal. Wat. Treat., 54 (2015) 2280–2292.
  29. C.N. Leia, I.C. Lou, H.U. Song, P. Sun, Turbidity removal improvement for Yangtze River raw water, Desal. Wat. Treat., 45 (2012) 215–221.
  30. Y. Li, J. Wang, Y. Su, Z. Luan, J. Liu, Coagulation of arsenic adsorbed ferrihydrite with the use of polyaluminium chloride (PAC) or polyferric sulfate (PFS), Desal. Wat. Treat., 49 (2012) 157–164.
  31. N. Kishimoto, M. Kobayashi, Effects of three additives on the removal of perfluorooctane sulfonate (PFOS) by coagulation using ferric chloride or aluminum sulfate, Water Sci. Technol., 73 (2016) 2971–2977.
  32. L. Feng, W. Wang, R. Feng, S. Zhao, H. Dong, S. Sun, B. Gao, Q. Yue, Coagulation performance and membrane fouling of different aluminum species during coagulation/ultrafiltration combined process, Chem. Eng. J., 262 (2015) 1161–1167.
  33. K.P.Y. Shak, T.Y. Wu, Optimized use of alum together with unmodified Cassia obtusifolia seed gum as a coagulant aid in treatment of palm oil mill effluent under natural pH of wastewater, Ind. Crops Prod., 76 (2015) 1169–1178.
  34. W. Subramonian, T.Y. Wu, S.P. Chai, An application of response surface methodology for optimizing coagulation process of raw industrial effluent using Cassia obtusifolia seed gum together with alum, Ind. Crops Prod., 70 (2015) 107–115.
  35. N. Suo, Y. Yu, H. Zhang, M. Li, Y. Zhou, L. Cheng, The progress of the preparation of coagulant from industrial wastes, Appl. Mech. Mater., 253–255 (2013) 931–934.
  36. T. Ahmad, K. Ahmad, A. Ahad, M. Alam, Characterization of water treatment sludge and its reuse as coagulant, J. Environ. Manage., 182 (2016) 606–611.
  37. T. Chen, Y. Xu, D. Wang, W. Shi, F. Cui, The impact of recycling sludge on water quality in coagulation for treating low-turbidity source water, Desal. Wat. Treat., 57 (2016) 14433–14442.
  38. Z. Pan, C. Zhang, B. Huang, Using adsorbent made from sewage sludge to enhance wastewater treatment and control fouling in a membrane bioreactor, Desal. Wat. Treat., 57 (2016) 9070–9081.
  39. B. Xi, Y. Zhao, L.Y. Zhang, X. Xia, Z. Luan, X. Peng, W. Lv, Return chemical sludge employed in enhancement of phosphate removal from wastewater, Desal. Wat. Treat., 52 (2014) 6639–6647.
  40. Y. Xu, T. Chen, R. Xu, L. He, F. Cui, Impact of recycling alum sludge on coagulation of low-turbidity source waters, Desal. Wat. Treat., 57 (2016) 6732–6739.
  41. Z. Zhou, Y. Yang, X. Li, W. Gao, Coagulation performance and flocs characteristics of variable sludge recycling designs for the synthetic low-turbidity water treatment, Desal. Wat. Treat., 52 (2014) 4705–4714.
  42. C. Tociu, E. Diacu, Quality assessment of the aluminium sulphate coagulant recovered from metallurgical slag based on a correlation of the removed phosphorous from municipal wastewaters, UPB Sci. Bull., Ser. B: Chem. Mater. Sci., 77 (2015) 29–40.
  43. A. Yildiz, M. Oztas, N. Karakaya, F. Evrendilek, A. Akyildiz, O.A. Agirgan, E. Tinmaz-Kose, C.B. Sisman, G. Kaykioglu, S. Ozden-Celik, Novel uses of red mud in textile wastewater treatment, dyeing, and concrete production, Environ. Eng. Manage. J., 14 (2015) 1171–1181.
  44. E.K. Mahmoued, Application of cement kiln dust for chemically enhanced primary treatment of municipal wastewater, Desal. Wat. Treat., 52 (2014) 4698–4704.
  45. K. Gungor, N. Karakaya, Y. Gunes, S. Yatkin, F. Evrendilek, Utilizing aluminum etching wastewater for tannery wastewater coagulation: performance and feasibility, Desal. Wat. Treat., 57 (2016) 2413–2421.
  46. B. Ersoy, I. Tosun, A. Günay, S. Dikmen, Turbidity removal from wastewaters of natural stone processing by coagulation/flocculation methods, Clean Soil Air Water, 37 (2009) 225–232.
  47. M. Solak, M. Kiliç, Y. Hüseyin, A. Şencan, Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: comparison of electrode materials and electrode connection systems, J. Hazard. Mater., 172 (2009) 345–352.
  48. N. Careddu, G. Marras, G. Siotto, Recovery of sawdust resulting from marble processing plants for future uses in high value-added products, J. Cleaner Prod., 84 (2014) 533–539.
  49. M. Ehteshami, S. Maghsoodi, E. Yaghoobnia, Optimum turbidity removal by coagulation/flocculation methods from wastewaters of natural stone processing, Desal. Wat. Treat., 57 (2016) 20749–20757.
  50. H.H. Lo, Y.T. Hung, Wastewater treatment: the utilization of earth materials as coagulants, J. Environ. Health, 53 (1990) 22–25.
  51. Q.B. Gu, F.S. Li, Treatment of dyeing wastewater using coal fly ash as co-coagulant, Toxicol. Environ. Chem., 85 (2003) 75–80.
  52. M. Fan, R.C. Brown, T.D. Wheelock, A.T. Cooper, M. Nomura, Y. Zhuang, Production of a complex coagulant from fly ash, Chem. Eng. J., 106 (2005) 269–277.
  53. Y.Q. Li, F. Tang, K. Hu, Q.L. Zhao, F.Y. Cui, Z.G. Liu, Production of fly ash-based coagulant and its application in sewage treatment, J. Harbin Inst. Technol., 40 (2008) 1238–1241.
  54. Z. Sui, X. Zhao, X. Qiang, Treatment of Tanning Wastewater with Flyash-Based Coagulant, 4th International Conference on Bioinformatics and Biomedical Engineering, iCBBE, 2010.
  55. B. Liu, Z. Li, Experimental Study on Wastewater Treatment by Fly Ash Coagulant, Proc. 2011 International Conference on Electric Technology and Civil Engineering, ICETCE, 2011, pp. 1363–1366.
  56. Y. Yu, J. Tan, A. Yang, Y. Zhou, L. Cheng, Modified coal fly ashes applied in industrial wastewater, Adv. Mater. Res., 549 (2012) 941–944.
  57. Y. Li, L. Chen, M. Du, Preparation of coagulant from fly ash and its application in Yellow River water treatment, Chin. J. Environ. Eng., 7 (2013) 1346–1350.
  58. K. Hu, Q.L. Zhao, W. Chen, F. Tang, H. Xu, Preparation and performance of fly ash-based coagulants in chemically enhanced primary treatment of domestic wastewater, Desal. Wat. Treat., 57 (2016) 4429–4438.
  59. V. Orescanin, K. Nad, L. Mikelic, N. Mikulic, S. Lulic, Utilization of bauxite slag for the purification of industrial wastewaters, Process Saf. Environ. Prot., 84 (2006) 265–269.
  60. J. Li, J. Gan, Y. Chen, Preparation of a sulfate-based complex coagulant from boiler slag and its application in domestic sewage treatment, Adv. Mater. Res., 148–149 (2011) 259–266.
  61. J. Li, X. Cao, Z. Ge, X. Yang, Z. Zheng, Flocculation of Microcystis aeruginosa by steel slag and its safety evaluation, J. Appl. Phycol., 28 (2016) 261–268.
  62. I.B. Singh, K. Chaturvedi, R.K. Morchhale, A.H. Yegneswaran, Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay, J. Hazard. Mater., 141 (2007) 215–222.
  63. T. Sofilić, A. Rastovčan-Mioč, S. Cerjan-Stefanović, V. Novosel- Radović, M. Jenko, Characterization of steel mill electric-arc furnace dust, J. Hazard. Mater., 109 (2004) 59–70.
  64. B. Das, S. Prakash, P.S.R. Reddy, V.N. Misra, An overview of utilization of slag and sludge from steel industries, Resour. Conserv. Recycl., 50 (2007) 40–57.
  65. M. Ahmaruzzaman, A review on the utilization of fly ash, Prog. Energy Combust. Sci., 36 (2010) 327–363.
  66. M. Ilic, C. Cheeseman, C. Sollars, J. Knight, Mineralogy and microstructure of sintered lignite coal fly ash, Fuel, 82 (2003) 331–336.
  67. N. Koukouzas, J. Hämäläinen, D. Papanikolaou, A. Tourunen, T. Jäntti, Mineralogical and elemental composition of fly ash from pilot scale fluidised bed combustion of lignite, bituminous coal, wood chips and their blends, Fuel, 86 (2007) 2186–2193.
  68. V. Karayannis, X. Spiliotis, E. Papastergiadis, K. Ntampegliotis, G. Papapolymerou, P. Samaras, Contribution to the sustainable management of resources by novel combination of industrial solid residues into red ceramics, Bull. Environ. Contam. Toxicol., 94 (2015) 345–351.
  69. L.S. Clesceri, A.D. Eaton, A.E. Greenberg, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C., USA, 1998.
  70. L.K. Wang, Y.T. Hung, N.K. Shammas, Physicochemical Treatment Processes, Humana Press, Totowa, NJ, 2007.
  71. H.L. White, Introduction to Industrial Chemistry, Wiley, New York, NY, 1986.
  72. A.E. Domopoulou, K.H. Gudulas, E.S. Papastergiadis, V.G. Karayannis, Coagulation/flocculation/sedimentation applied to marble processing wastewater treatment, Mod. Appl. Sci., 9 (2015) 137–144.
  73. I. Licskó, Realistic coagulation mechanisms in the use of aluminium and iron(III) salts, Water Sci. Technol., 36 (1997) 103–110.
  74. J. Gregory, Particles in Water: Properties and Processes, CRC Press, Boca Raton, FL, 2005.
  75. F. Woodard, Industrial Waste Treatment Handbook, Butterworth–Heinemann, Woburn, MA, 2001.