References

  1. P. Vijayan, C. Mahendiran, C. Suresh, K. Shanthi, Photocatalytic activity of iron doped nanocrystalline titania for the oxidative degradation of 2,4,6-trichlorophenol, Catal. Today, 141 (2009) 220–224.
  2. S. Rengaraj, X.Z. Li, Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension, J. Mol. Catal. A: Chem., 243 (2006) 60–67.
  3. S. Mozia, K. Bubacz, M. Janus, A.W. Morawski, Decomposition of 3-chlorophenol on nitrogen modified TiO2 photocatalysts, J. Hazard. Mater., 203 (2012) 128–136.
  4. M. Nichkova, R. Galve, M.-P. Marco, Biological monitoring of 2,4,5-trichlorophenol (I): preparation of antibodies and development of an immunoassay using theoretical models, Chem. Res. Toxicol., 15 (2002) 1360–1370.
  5. G. Lente, J.H. Espenson, Oxidation of 2,4,6-trichlorophenol by hydrogen peroxide. Comparison of different iron-based catalysts, Green Chem., 7 (2005) 28–34.
  6. M. Pera-Titus, V. García-Molina, M.A. Baños, J. Giménez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Appl. Catal. B, 47 (2004) 219–256.
  7. G. Díaz-Díaz, M. Celis-García, M.C. Blanco-López, M.J. Lobo-Castañón, A.J. Miranda-Ordieres, P. Tuñón-Blanco, Heterogeneous catalytic 2,4,6-trichlorophenol degradation at hemin–acrylic copolymer, Appl. Catal. B, 96 (2010) 51–56.
  8. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37–38.
  9. S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review, J. Environ. Manage., 92 (2011) 311–330.
  10. V. Vo, T.P.T. Thi, H.Y. Kim, S.J. Kim, Facile post-synthesis and photocatalytic activity of N-doped ZnO–SBA-15, J. Phys. Chem. Solids, 75 (2014) 403–409.
  11. R. Saravanan, M.M. Khan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity, RSC Adv., 5 (2015) 34645–34651.
  12. M.M. Khan, S.A. Ansari, M.E. Khan, M.O. Ansari, B.K. Min, M.H. Cho, Visible light-induced enhanced photoelectrochemical and photocatalytic studies of gold decorated SnO2 nanostructures, New J. Chem., 39 (2015) 2758–2766.
  13. S. Cao, J. Yu, Carbon-based H2-production photocatalytic materials, J. Photochem. Photobiol. C, 27 (2016) 72–99.
  14. Z. He, J. Fu, B. Cheng, J. Yu, S. Cao, Cu2(OH)2CO3 clusters: novel noble-metal-free cocatalysts for efficient photocatalytic hydrogen production from water splitting, Appl. Catal. B, 205 (2017) 104–111.
  15. A. Etogo, R. Liu, J. Ren, L. Qi, C. Zheng, J. Ning, Y. Zhong, Y. Hu, Facile one-pot solvothermal preparation of Mo-doped Bi2WO6 biscuit-like microstructures for visible-light-driven photocatalytic water oxidation, J. Mater. Chem. A, 4 (2016) 13242–13250.
  16. S.K. Yadav, S.R. Madeshwaran, J.W. Cho, Synthesis of a hybrid assembly composed of titanium dioxide nanoparticles and thin multi-walled carbon nanotubes using “click chemistry”, J. Colloid Interface Sci., 358 (2011) 471–476.
  17. Y. Park, W. Kim, H. Park, T. Tachikawa, T. Majima, W. Choi, Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity, Appl. Catal. B, 91 (2009) 355–361.
  18. X. Hu, H. Ji, L. Wu, Singlet oxygen photogeneration and 2,4,6-TCP photodegradation at Pt/TiO2 under visible light illumination, RSC Adv., 2 (2012) 12378–12383.
  19. T.K. Ghorai, Photocatalytic degradation of 4-chlorophenol by CuMoO4-doped TiO2 nanoparticles synthesized by chemical route, Open J. Phys. Chem., 1 (2011) 28–36.
  20. J. Low, B. Cheng, J. Yu, Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review, Appl. Surf. Sci., 392 (2017) 658–686.
  21. A. Meng, J. Zhang, D. Xu, B. Cheng, J. Yu, Enhanced photocatalytic H2-production activity of anatase TiO2 nanosheet by selectively depositing dual-cocatalysts on {101} and {001} facets, Appl. Catal. B, 198 (2016) 286–294.
  22. H. Ouyang, J.F. Huang, C. Li, L. Cao, J. Fei, Synthesis of carbon doped ZnO with a porous structure and its solarlight photocatalytic properties, Mater. Lett., 111 (2013) 217–220.
  23. S.J. Peatson, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent progress in processing and properties of ZnO, Prog. Mater Sci., 50 (2005) 293–340.
  24. C.A.K. Gouvea, F. Wypych, S.G. Moraes, N. Duran, N. Nagata, P. Peralta-Zamora, Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution, Chemosphere, 40 (2000) 433–440.
  25. B. Dindar, S. Icli, Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight, J. Photochem. Photobiol. A, 140 (2001) 263–268.
  26. S.L. Xiong, B.J. Xi, Y.T. Qian, CdS hierarchical nanostructures with tunable morphologies: preparation and photocatalytic properties, J. Phys. Chem. C, 114 (2010) 14029–14035.
  27. L. Stolt, J. Hedstrom, J. Kessler, M. Ruckh, K.O. Velthaus, H.W. Schock, ZnO/CdS/CuInSe2 thin‐film solar cells with improved performance, Appl. Phys. Lett., 62 (1993) 597.
  28. K. Ullah, Z.-D. Meng, S. Ye, L. Zhu, W.-C. Oh, Microalgal biofuels: flexible bioenergies for sustainable development, J. Ind. Chem. Eng., 20 (2014) 1035–1046.
  29. E.S. Aazam, Photocatalytic oxidation of methylene blue dye under visible light by Ni doped Ag2S nanoparticles, J. Ind. Chem. Eng., 20 (2014) 4033–4038.
  30. K. Vignesh, R. Priyanka, R. Hariharan, M. Rajarajan, A. Suganthi, Fabrication of CdS and CuWO4 modified TiO2 nanoparticles and its photocatalytic activity under visible light irradiation, J. Ind. Chem. Eng., 20 (2014) 435–443.
  31. B. Zhu, P. Xia, Y. Li, W. Ho, J. Yu, Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst, Appl. Surf. Sci., 391 (2017) 175–183.
  32. X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts, Chem. Soc. Rev., 45 (2016) 2603–2636.
  33. Y. Hu, X. Gao, L. Yu, Y. Wang, J. Ning, S. Xu, X.W. (David) Lou, Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity, Angew. Chem., 21 (2013) 5746–5749.
  34. W. Yang, Y. Liu, Y. Hu, M. Zhou, H. Qian, Microwave-assisted synthesis of porous CdO–CdS core–shell nanoboxes with enhanced visible-light-driven photocatalytic reduction of Cr(VI), J. Mater. Chem., 22 (2012) 13895–13898.
  35. Y. Liu, L. Zhou, Y. Hu, C. Guo, H. Qian, F. Zhang, X.W. (David) Lou, Magnetic-field induced formation of 1D Fe3O42/C/CdS coaxial nanochains as highly efficient and reusable photocatalysts for water treatment, J. Mater. Chem., 21 (2011) 18359–18364.
  36. P. Chen, Y. Su, H. Liu, Y. Wang, Interconnected tin disulfide nanosheets grown on graphene for Li-ion storage and photocatalytic applications, ACS Appl. Mater. Interfaces, 5 (2013) 12073–12082.
  37. Y.C. Zhang, Z.N. Du, S.Y. Li, M. Zhang, Novel synthesis and high visible light photocatalytic activity of SnS2 nanoflakes from SnCl2·2H2O and S powders, Appl. Catal. B, 95 (2010) 153–159.
  38. Y. Bai, X. Zong, H. Yu, Z.-G. Chen, L. Wang, Scalable low-cost SnS2 nanosheets as counter electrode building blocks for dyesensitized solar cells, Chem. Eur. J., 20 (2014) 8670–8676.
  39. Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu, F. Lei, T. Yao, J. He, S. Wei, Y. Xie, Freestanding tin disulfide single-layers realizing efficient visible-light water splitting, Angew. Chem. Int. Ed., 35 (2012) 8727–8731.
  40. X. Yuan, H. Wang, Y. Wu, X. Chen, G. Zeng, L. Leng, C. Zhang, A novel SnS2–MgFe2O4/reduced graphene oxide flower-like photocatalyst: solvothermal synthesis, characterization and improved visible-light photocatalytic activity, Catal. Commun., 61 (2015) 62–65.
  41. R. Lucena, F. Fresno, J.C. Conesa, Hydrothermally synthesized nanocrystalline tin disulphide as visible light-active photocatalyst: spectral response and stability, Appl. Catal. B, 415–416 (2012) 111–117.
  42. T. Yan, L. Li, G. Li, Y. Wang, W. Hu, X. Guan, Porous SnIn4S8 microspheres in a new polymorph that promotes dyes degradation under visible light irradiation, J. Hazard. Mater., 186 (2011) 272–279.
  43. S. Rengaraj, X.Z. Li, P.A. Tanner, Z. Pan, G.K.H. Pang, Photocatalytic degradation of methylparathion—an endocrine disruptor by Bi3+-doped TiO2, J. Mol. Catal. A: Chem., 247 (2006) 36–43.
  44. S. Rengaraj, S. Venkataraj, J.-W. Yeon, X.Z. Li, Y. Kim, G.K.H. Pang, Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination, Appl. Catal. B, 77 (2007) 157–165.
  45. Y.C. Zhang, Z.N. Du, K.W. Li, M. Zhang, Size-controlled hydrothermal synthesis of SnS2 nanoparticles with high performance in visible light-driven photocatalytic degradation of aqueous methyl orange, Sep. Purif. Technol., 81 (2011) 101–107.
  46. A.R. Wang, H. Xiao, Controllable preparation of SnO2 nanoplates and nanoparticles via hydrothermal oxidation of SnS2 nanoplates, Mater. Lett., 63 (2009) 1221–1223.
  47. B.D. Cullity, J.W. Weymouth, Elements of X-ray diffraction, Am. J. Phys., 25 (1957) 394.
  48. P. Kubelka, F. Munk, Ein Beitrag zur Optik der Farban striche, Z. Tech. Phys., 12 (1931) 593–603.
  49. P. Kubelka, New contributions to the optics of intensely light-scattering materials, Part I, J. Opt. Soc. Am., 38 (1948) 448–457.
  50. R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study, J. Sol-Gel Sci. Technol., 61 (2012) 1–7.
  51. R. Schlaf, P.G. Schroeder, M.W. Nelson, B.A. Parkinson, Observation of strong band bending in perylene tetracarboxylic dianhydride thin films grown on SnS2, J. Appl. Phys., 86 (1999) 1499.
  52. C.D. Wagner, Handbook of X-ray Photoelectron Spectroscopy, Perkin–Elmer Corporation (1979).
  53. X. Chia, P. Lazar, Z. Sofer, J. Luxa, M. Pumera, Layered SnS versus SnS2: valence and structural implications on electrochemistry and clean energy electrocatalysis, J. Phys. Chem. C, 120 (2016) 24098–24111.
  54. Y. Lei, S. Song, W. Fan, Y. Xing, H. Zhang, Facile synthesis and assemblies of flowerlike SnS2 and In3+-doped SnS2: hierarchical structures and their enhanced photocatalytic property, J. Phys. Chem. C, 113 (2009) 1280–1285.
  55. Y.C. Zhang, L. Yao, G. Zhang, D.D. Dinoysiou, J. Li, X. Du, Onestep hydrothermal synthesis of high-performance visible-lightdriven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI), Appl. Catal. B, 144 (2014) 730–738.
  56. Y.C. Zhang, J. Li, M. Zhang, D.D. Dionysiou, Size-tunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI), Environ. Sci. Technol., 45 (2011) 9324–9331.
  57. S. Park, J. Park, R. Selvaraj, Y. Kim, Facile microwave-assisted synthesis of SnS2 nanoparticles for visible-light responsive photocatalyst, J. Ind. Eng. Chem., 31 (2015) 269–275.