References
- P. Vijayan, C. Mahendiran, C. Suresh, K. Shanthi, Photocatalytic
activity of iron doped nanocrystalline titania for the oxidative
degradation of 2,4,6-trichlorophenol, Catal. Today, 141 (2009)
220–224.
- S. Rengaraj, X.Z. Li, Enhanced photocatalytic activity of TiO2
by doping with Ag for degradation of 2,4,6-trichlorophenol in
aqueous suspension, J. Mol. Catal. A: Chem., 243 (2006) 60–67.
- S. Mozia, K. Bubacz, M. Janus, A.W. Morawski, Decomposition
of 3-chlorophenol on nitrogen modified TiO2 photocatalysts, J.
Hazard. Mater., 203 (2012) 128–136.
- M. Nichkova, R. Galve, M.-P. Marco, Biological monitoring
of 2,4,5-trichlorophenol (I): preparation of antibodies and
development of an immunoassay using theoretical models,
Chem. Res. Toxicol., 15 (2002) 1360–1370.
- G. Lente, J.H. Espenson, Oxidation of 2,4,6-trichlorophenol
by hydrogen peroxide. Comparison of different iron-based
catalysts, Green Chem., 7 (2005) 28–34.
- M. Pera-Titus, V. García-Molina, M.A. Baños, J. Giménez, S.
Esplugas, Degradation of chlorophenols by means of advanced
oxidation processes: a general review, Appl. Catal. B, 47 (2004)
219–256.
- G. Díaz-Díaz, M. Celis-García, M.C. Blanco-López, M.J.
Lobo-Castañón, A.J. Miranda-Ordieres, P. Tuñón-Blanco,
Heterogeneous catalytic 2,4,6-trichlorophenol degradation at
hemin–acrylic copolymer, Appl. Catal. B, 96 (2010) 51–56.
- A. Fujishima, K. Honda, Electrochemical photolysis of water at
a semiconductor electrode, Nature, 238 (1972) 37–38.
- S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, Influence of
parameters on the heterogeneous photocatalytic degradation
of pesticides and phenolic contaminants in wastewater: a short
review, J. Environ. Manage., 92 (2011) 311–330.
- V. Vo, T.P.T. Thi, H.Y. Kim, S.J. Kim, Facile post-synthesis and
photocatalytic activity of N-doped ZnO–SBA-15, J. Phys. Chem.
Solids, 75 (2014) 403–409.
- R. Saravanan, M.M. Khan, V.K. Gupta, E. Mosquera, F. Gracia,
V. Narayanan, A. Stephen, ZnO/Ag/Mn2O3 nanocomposite for
visible light-induced industrial textile effluent degradation,
uric acid and ascorbic acid sensing and antimicrobial activity,
RSC Adv., 5 (2015) 34645–34651.
- M.M. Khan, S.A. Ansari, M.E. Khan, M.O. Ansari, B.K. Min, M.H.
Cho, Visible light-induced enhanced photoelectrochemical and
photocatalytic studies of gold decorated SnO2 nanostructures,
New J. Chem., 39 (2015) 2758–2766.
- S. Cao, J. Yu, Carbon-based H2-production photocatalytic
materials, J. Photochem. Photobiol. C, 27 (2016) 72–99.
- Z. He, J. Fu, B. Cheng, J. Yu, S. Cao, Cu2(OH)2CO3 clusters:
novel noble-metal-free cocatalysts for efficient photocatalytic
hydrogen production from water splitting, Appl. Catal. B, 205
(2017) 104–111.
- A. Etogo, R. Liu, J. Ren, L. Qi, C. Zheng, J. Ning, Y. Zhong, Y.
Hu, Facile one-pot solvothermal preparation of Mo-doped
Bi2WO6 biscuit-like microstructures for visible-light-driven
photocatalytic water oxidation, J. Mater. Chem. A, 4 (2016)
13242–13250.
- S.K. Yadav, S.R. Madeshwaran, J.W. Cho, Synthesis of a hybrid
assembly composed of titanium dioxide nanoparticles and
thin multi-walled carbon nanotubes using “click chemistry”, J.
Colloid Interface Sci., 358 (2011) 471–476.
- Y. Park, W. Kim, H. Park, T. Tachikawa, T. Majima, W. Choi,
Carbon-doped TiO2 photocatalyst synthesized without using
an external carbon precursor and the visible light activity, Appl.
Catal. B, 91 (2009) 355–361.
- X. Hu, H. Ji, L. Wu, Singlet oxygen photogeneration and
2,4,6-TCP photodegradation at Pt/TiO2 under visible light
illumination, RSC Adv., 2 (2012) 12378–12383.
- T.K. Ghorai, Photocatalytic degradation of 4-chlorophenol by
CuMoO4-doped TiO2 nanoparticles synthesized by chemical
route, Open J. Phys. Chem., 1 (2011) 28–36.
- J. Low, B. Cheng, J. Yu, Surface modification and enhanced
photocatalytic CO2 reduction performance of TiO2: a review,
Appl. Surf. Sci., 392 (2017) 658–686.
- A. Meng, J. Zhang, D. Xu, B. Cheng, J. Yu, Enhanced
photocatalytic H2-production activity of anatase TiO2 nanosheet
by selectively depositing dual-cocatalysts on {101} and {001}
facets, Appl. Catal. B, 198 (2016) 286–294.
- H. Ouyang, J.F. Huang, C. Li, L. Cao, J. Fei, Synthesis of
carbon doped ZnO with a porous structure and its solarlight
photocatalytic properties, Mater. Lett., 111 (2013)
217–220.
- S.J. Peatson, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent
progress in processing and properties of ZnO, Prog. Mater Sci.,
50 (2005) 293–340.
- C.A.K. Gouvea, F. Wypych, S.G. Moraes, N. Duran, N. Nagata,
P. Peralta-Zamora, Semiconductor-assisted photocatalytic
degradation of reactive dyes in aqueous solution, Chemosphere,
40 (2000) 433–440.
- B. Dindar, S. Icli, Unusual photoreactivity of zinc oxide
irradiated by concentrated sunlight, J. Photochem. Photobiol.
A, 140 (2001) 263–268.
- S.L. Xiong, B.J. Xi, Y.T. Qian, CdS hierarchical
nanostructures with tunable morphologies: preparation
and photocatalytic properties, J. Phys. Chem. C, 114 (2010)
14029–14035.
- L. Stolt, J. Hedstrom, J. Kessler, M. Ruckh, K.O. Velthaus, H.W.
Schock, ZnO/CdS/CuInSe2 thin‐film solar cells with improved
performance, Appl. Phys. Lett., 62 (1993) 597.
- K. Ullah, Z.-D. Meng, S. Ye, L. Zhu, W.-C. Oh, Microalgal
biofuels: flexible bioenergies for sustainable development, J.
Ind. Chem. Eng., 20 (2014) 1035–1046.
- E.S. Aazam, Photocatalytic oxidation of methylene blue dye
under visible light by Ni doped Ag2S nanoparticles, J. Ind.
Chem. Eng., 20 (2014) 4033–4038.
- K. Vignesh, R. Priyanka, R. Hariharan, M. Rajarajan, A. Suganthi,
Fabrication of CdS and CuWO4 modified TiO2 nanoparticles
and its photocatalytic activity under visible light irradiation, J.
Ind. Chem. Eng., 20 (2014) 435–443.
- B. Zhu, P. Xia, Y. Li, W. Ho, J. Yu, Fabrication and
photocatalytic activity enhanced mechanism of direct
Z-scheme g-C3N4/Ag2WO4 photocatalyst, Appl. Surf. Sci.,
391 (2017) 175–183.
- X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts, Chem. Soc.
Rev., 45 (2016) 2603–2636.
- Y. Hu, X. Gao, L. Yu, Y. Wang, J. Ning, S. Xu, X.W. (David) Lou,
Carbon-coated CdS petalous nanostructures with enhanced
photostability and photocatalytic activity, Angew. Chem., 21
(2013) 5746–5749.
- W. Yang, Y. Liu, Y. Hu, M. Zhou, H. Qian, Microwave-assisted
synthesis of porous CdO–CdS core–shell nanoboxes with
enhanced visible-light-driven photocatalytic reduction of
Cr(VI), J. Mater. Chem., 22 (2012) 13895–13898.
- Y. Liu, L. Zhou, Y. Hu, C. Guo, H. Qian, F. Zhang, X.W.
(David) Lou, Magnetic-field induced formation of 1D Fe3O42/C/CdS coaxial nanochains as highly efficient and reusable
photocatalysts for water treatment, J. Mater. Chem., 21 (2011)
18359–18364.
- P. Chen, Y. Su, H. Liu, Y. Wang, Interconnected tin disulfide
nanosheets grown on graphene for Li-ion storage and
photocatalytic applications, ACS Appl. Mater. Interfaces, 5
(2013) 12073–12082.
- Y.C. Zhang, Z.N. Du, S.Y. Li, M. Zhang, Novel synthesis and
high visible light photocatalytic activity of SnS2 nanoflakes
from SnCl2·2H2O and S powders, Appl. Catal. B, 95 (2010)
153–159.
- Y. Bai, X. Zong, H. Yu, Z.-G. Chen, L. Wang, Scalable low-cost
SnS2 nanosheets as counter electrode building blocks for dyesensitized
solar cells, Chem. Eur. J., 20 (2014) 8670–8676.
- Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu, F. Lei, T. Yao,
J. He, S. Wei, Y. Xie, Freestanding tin disulfide single-layers
realizing efficient visible-light water splitting, Angew. Chem.
Int. Ed., 35 (2012) 8727–8731.
- X. Yuan, H. Wang, Y. Wu, X. Chen, G. Zeng, L. Leng, C. Zhang,
A novel SnS2–MgFe2O4/reduced graphene oxide flower-like
photocatalyst: solvothermal synthesis, characterization and
improved visible-light photocatalytic activity, Catal. Commun.,
61 (2015) 62–65.
- R. Lucena, F. Fresno, J.C. Conesa, Hydrothermally synthesized
nanocrystalline tin disulphide as visible light-active
photocatalyst: spectral response and stability, Appl. Catal. B,
415–416 (2012) 111–117.
- T. Yan, L. Li, G. Li, Y. Wang, W. Hu, X. Guan, Porous SnIn4S8
microspheres in a new polymorph that promotes dyes
degradation under visible light irradiation, J. Hazard. Mater.,
186 (2011) 272–279.
- S. Rengaraj, X.Z. Li, P.A. Tanner, Z. Pan, G.K.H. Pang,
Photocatalytic degradation of methylparathion—an endocrine
disruptor by Bi3+-doped TiO2, J. Mol. Catal. A: Chem., 247 (2006)
36–43.
- S. Rengaraj, S. Venkataraj, J.-W. Yeon, X.Z. Li, Y. Kim, G.K.H.
Pang, Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light
illumination, Appl. Catal. B, 77 (2007) 157–165.
- Y.C. Zhang, Z.N. Du, K.W. Li, M. Zhang, Size-controlled
hydrothermal synthesis of SnS2 nanoparticles with high
performance in visible light-driven photocatalytic degradation
of aqueous methyl orange, Sep. Purif. Technol., 81 (2011)
101–107.
- A.R. Wang, H. Xiao, Controllable preparation of SnO2
nanoplates and nanoparticles via hydrothermal oxidation of
SnS2 nanoplates, Mater. Lett., 63 (2009) 1221–1223.
- B.D. Cullity, J.W. Weymouth, Elements of X-ray diffraction, Am.
J. Phys., 25 (1957) 394.
- P. Kubelka, F. Munk, Ein Beitrag zur Optik der Farban striche,
Z. Tech. Phys., 12 (1931) 593–603.
- P. Kubelka, New contributions to the optics of intensely
light-scattering materials, Part I, J. Opt. Soc. Am., 38 (1948)
448–457.
- R. López, R. Gómez, Band-gap energy estimation from diffuse
reflectance measurements on sol–gel and commercial TiO2: a
comparative study, J. Sol-Gel Sci. Technol., 61 (2012) 1–7.
- R. Schlaf, P.G. Schroeder, M.W. Nelson, B.A. Parkinson,
Observation of strong band bending in perylene tetracarboxylic
dianhydride thin films grown on SnS2, J. Appl. Phys., 86 (1999)
1499.
- C.D. Wagner, Handbook of X-ray Photoelectron Spectroscopy,
Perkin–Elmer Corporation (1979).
- X. Chia, P. Lazar, Z. Sofer, J. Luxa, M. Pumera, Layered SnS versus
SnS2: valence and structural implications on electrochemistry
and clean energy electrocatalysis, J. Phys. Chem. C, 120 (2016)
24098–24111.
- Y. Lei, S. Song, W. Fan, Y. Xing, H. Zhang, Facile synthesis and
assemblies of flowerlike SnS2 and In3+-doped SnS2: hierarchical
structures and their enhanced photocatalytic property, J. Phys.
Chem. C, 113 (2009) 1280–1285.
- Y.C. Zhang, L. Yao, G. Zhang, D.D. Dinoysiou, J. Li, X. Du, Onestep
hydrothermal synthesis of high-performance visible-lightdriven
SnS2/SnO2 nanoheterojunction photocatalyst for the
reduction of aqueous Cr(VI), Appl. Catal. B, 144 (2014) 730–738.
- Y.C. Zhang, J. Li, M. Zhang, D.D. Dionysiou, Size-tunable
hydrothermal synthesis of SnS2 nanocrystals with high
performance in visible light-driven photocatalytic reduction
of aqueous Cr(VI), Environ. Sci. Technol., 45 (2011)
9324–9331.
- S. Park, J. Park, R. Selvaraj, Y. Kim, Facile microwave-assisted
synthesis of SnS2 nanoparticles for visible-light responsive
photocatalyst, J. Ind. Eng. Chem., 31 (2015) 269–275.