References

  1. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol., C, 1 (2000) 1–21.
  2. S.H. Kang, W. Lee, H.S. Kim, Effects of CdS sensitization on single crystalline TiO2 nanorods in photoelectrochemical cells, Mater. Lett., 85 (2012) 74–76.
  3. J. Yu, Y. Hai, M. Jaroniec, Photocatalytic hydrogen production over CuO-modified titania, J. Colloid Interface Sci., 357 (2011) 223–228.
  4. V. Mendonc, O.F. Lopes, R.P. Fregonesi, T.R. Giraldic, C. Ribeirod, TiO2-SnO2 heterostructures applied to dye photodegradation: the relationship between variables of synthesis and photocatalytic performance, Appl. Surf. Sci., 298 (2014) 182–191.
  5. J. Zhang, L.J. Xu, Z.Q. Zhu, Q.L. Liu, Synthesis and properties of (Yb, N)-TiO2 photocatalyst for degradation of methylene blue (MB) under visible light irradiation, Mater. Res. Bull., 70 (2015) 358–364.
  6. C. Huang, Y. Lv, Q. Zhou, S. Kang, X. Li, J. Mu, Visible photocatalytic activity and photoelectrochemical behavior of TiO2 nanoparticles modified with metal porphyrins containing hydroxyl group, Ceram. Int., 40 (2014) 7093–7098.
  7. S. Palmas, A.D. Pozzo, M. Mascia, A. Vacca, P.C. Ricci, Sensitization of TiO2 nanostructures with Coumarin 343, Chem. Eng. J., 211–212 (2012) 285–292.
  8. Sh. Murphy, C. Saurel, A. Morrissey, J. Tobin, M. Oelgemöller, K. Nolan, Photocatalytic activity of a porphyrin/TiO2 composite in the degradation of pharmaceuticals, Appl. Catal., B, 119–120 (2012) 156–165.
  9. A. Ebrahimian, M.A. Zanjanchi, H. Noei, M. Arvand, Y. Wang, TiO2 nanoparticles containing sulphonated cobalt phthalocyanine: preparation, characterization and photocatalytic performance, J. Environ. Chem. Eng., 21 (2014) 484–494.
  10. C.C. Leznoff, A.B.P. Lever, Eds., Phthalocyanines. Properties and Applications, VCH Publ. Inc., New York, 1996, p. 4.
  11. G. Mele, L. Palmisano, G. Dyrda, R. Słota, Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with lanthanide doubledecker phthalocyanine complexes, J. Phys. Chem. B, 111 (2007) 6581–6588.
  12. G. Mele, R. Del Sole, G. Vasapollo, G. Marcí, L. Palmisano, J.M. Coronado, M.D. Hernández-Alonso, C. Malitesta, M.R. Guascito, TRMC, XPS, and EPR characterizations of polycrystalline TiO2 porphyrin impregnated powders and their catalytic activity for 4-nitrophenol photodegradation in aqueous suspension, J. Phys. Chem. B, 109 (2005) 12347–12352.
  13. G. Mele, R. Del Sole, G. Vasapollo, E. García-López, L. Palmisano, M. Schiavello, Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II)–porphyrin or Cu(II)–phthalocyanine, J. Catal., 217 (2003) 334–342.
  14. G.O. Granados, C.A.M. Paèz, F.O. Martıńez, E.A. PaézMozo, Photocatalytic degradation of phenol on TiO2 and TiO2/Pt sensitized with metallophthalocyanines, Catal. Today, 107–108 (2005) 589–594.
  15. L. Li, B. Xin, Photogenerated carrier transfer mechanism and photocatalysis properties of TiO2 sensitized by Zn(II) phthalocyanine, J. Cent. South Univ. Technol., 17 (2010) 218–222.
  16. W. Fa, L. Zan, Ch. Gong, J. Zhong, K. Deng, Solid-phase photocatalytic degradation of polystyrene with TiO2 modified by iron (II) phthalocyanine, Appl. Catal., B, 79 (2008) 216–223.
  17. K.T. Ranjit, I. Willner, S. Bossmann, A. Braun, Iron(III) phthalocyanine-modified titanium dioxide: a novel photocatalyst for the enhanced photodegradation of organic pollutants, J. Phys. Chem. B, 102 (1998) 9397–9403.
  18. Z. Wang, W. Mao, H. Chen, F. Zhang, X. Fan, G. Qian, Copper(II) phthalocyanine tetrasulfonate sensitized nanocrystalline titania photocatalyst: synthesis in situ and photocatalysis under visible light, Catal. Commun., 7 (2006) 518–522.
  19. Z. Wang, H. Chen, P. Tang, W. Mao, F. Zhang, G. Qian, X. Fan, Hydrothermal in situ preparation of the copper phthalocyanine tetrasulfonate modified titanium dioxide photocatalyst, Colloid. Surf., A, 289 (2006) 207–211.
  20. A. Ebrahimian Pirbazari, Sensitization of TiO2 nanoparticles with cobalt phthalocyanine: an active photocatalyst for degradation of 4-chlorophenol under visible light, Procedia Mater. Sci., 11 (2015) 622–627.
  21. M. Muhler, A. Ebrahimian, M.A. Zanjanchi, Sensitization of TiO2 Nanoparticles with Sulphonated Cobalt Phthalocyanine: An Active Photocatalyst for Methylene Blue Degradation under Visible Light, Proc. 4th International Conference on Nanostructures (ICNS4), Kish Island, Iran, 2012.
  22. F.P. Schafer, Dye Lasers, Springer-Verlag, Berlin, 1973.
  23. J.H. Weber, D.H. Bush, Complexes derived from strong field ligands. XIX. Magnetic properties of transition metal derivatives of 4,4’,4”,4”’- tetrasulfophthalocyanine, Inorg. Chem., 4 (1965) 469–471.
  24. K. Tanaka, M.F.V. Capule, T. Hisanaga, Effect of crystallinity of TiO2 on its photocatalytic action, Chem. Phys. Lett., 29 (1991) 73–76.
  25. V. Iliev, V. Alexiev, L. Bilyarska, Effect of metal phthalocyanine complex aggregation on the catalytic and photocatalytic oxidation of sulfur containing compounds, J. Mol. Catal. A: Chem., 137 (1999) 15–22.
  26. R. Seoudi, G.S. El-Bahy, Z.A. El Sayed, FTIR, TGA and DC electrical conductivity studies of phthalocyanine and its complexes, J. Mol. Struct., 753 (2005) 119–126.
  27. P. Karandikar, A.J. Chandwadkar, M. Agashe, N.S. Ramgir, S. Sivasanker, Liquid phase oxidation of alkanes using Cu/Co-perchlorophthalocyanine immobilized MCM-41 under mild reaction conditions, Appl. Catal., A, 297 (2006) 220–230.
  28. M.R. Nabid, S. Asadi, M. Shamsianpour, R. Sedghi, S. Osati, N. Safari, Oxidative polymerization of 3,4-ethylenedioxythiophene using transition-metal tetrasulfonated phthalocyanine, React. Func. Polym., 70 (2010) 75–80.
  29. E. Vargas, R. Vargas, O. Núñez, A TiO2 surface modified with copper(II) phthalocyanine-tetrasulfonic acid tetrasodium salt as a catalyst during photoinduced dichlorvos mineralization by visible solar light, Appl. Catal., B, 156–157 (2014) 8–14.
  30. Y. Wang, Y. Huang, W. Ho, Biomolecule-controlled hydrothermal synthesis of C–N–S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation, J. Hazard. Mater., 169 (2009) 77–87.
  31. E. Bae, W. Choi, Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light, Environ. Sci. Technol., 37 (2003) 147–152.
  32. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  33. M. Beyrhouty, A.B. Sorokin, S. Daniele, L.G. Hubert-Pfalzgraf, Combination of two catalytic sites in a novel nanocrystalline TiO2–iron tetrasulfophthalocyanine material provides better catalytic properties, New J. Chem., 29 (2005) 1245–1248.
  34. N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters, J. Photochem. Photobiol., A, 157 (2003) 111–116.
  35. X. Wang, P. Wu, Zh. Huang, N. Zhu, J. Wu, P. Li, Zh. Dang, Solar photocatalytic degradation of methylene blue by mixed metal oxide catalysts derived from ZnAlTi layered double hydroxides, Appl. Clay Sci., 95 (2014) 95–103.
  36. E. Evgenidou, K. Fytianos, I. Poulios, Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts, Appl. Catal., B, 59 (2005) 81–89.
  37. M.R. Hoffmann, S.T. Martin, W. Choi, D.H. Bahneman, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69–96.
  38. P. Panneerselvam, N. Morad, K.A. Tan, Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution, J. Hazard. Mater., 186 (2011) 160–168.
  39. Q. Xiao, J. Zhang, Ch. Xiao, Zh. Si, X. Tan, Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension, Solar Energy, 82 (2008) 706–713.
  40. A. Akyol, H.C. Yatmaz, M. Bayramoglu, Photocatalytic decolorization of remazol red RR in aqueous ZnO suspensions, Appl. Catal., B, 54 (2004) 19–24.
  41. K.M. Parida, N. Baliarsingh, B.S. Patra, J. Das, Copperphthalocyanine immobilized Zn/Al LDH as photocatalyst under solar radiation for decolorization of methylene blue, J. Mol. Catal. A: Chem., 267 (2007) 202–208.
  42. L. Wu, A. Li, G. Gao, Zh. Fei, Sh. Xu, Q. Zhang, Efficient photodegradation of 2,4-dichlorophenol in aqueous solution catalyzed by polydivinylbenzene-supported zinc phthalocyanine, J. Mol. Catal. A: Chem., 269 (2007) 183–189.
  43. F. Wang, Sh. Min, Y. Han, L. Feng, Visible-light-induced photocatalytic degradation of methylene blue with polyanilinesensitized TiO2 composite photocatalysts, Superlattices Microstruct., 48 (2010) 170–180.
  44. L. Song, R.L. Qiu, Y.Q. Mo, D.D. Zhang, H. Wei, Y. Xiong, Photodegradation of phenol in a polymer-modified TiO2 semiconductor particulate system under the irradiation of visible light, Catal. Commun., 8 (2007) 429–433.
  45. H.C. Liang, X.Z. Li, Visible-induced photocatalytic reactivity of polymer–sensitized titania nanotube films, Appl. Catal., B, 86 (2009) 8–17.
  46. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, Ch. Guillard, J.-M. Herrmann, Photocatalytic degradation pathway of methylene blue in water, Appl. Catal., B, 31 (2001) 145–157.