References
- M. de Graaff, M.F.M. Bijmans, B. Abbas, G.J.W. Euverink, G.
Muyzer, A.J.H. Janssen, Biological treatment of refinery spent
caustics under halo-alkaline conditions, Bioresour. Technol.,
102 (2011) 7257–7264.
- B. Kumfer, C. Felch, C. Maugans, Wet Air Oxidation Treatment
of Spent Caustic in Petroleum Refineries, National Petrochemical
and Refiners Association Conference, Phoenix, AZ, Vol. 23, 2010.
- T.M.S. Carlos, C.B. Maugans, Wet Air Oxidation of Refinery
Spent Caustic: A Refinery Case Study, NPRA Conference, San
Antonio, 2000.
- S.H. Sheu, H.S. Weng, Treatment of olefin plant spent caustic by
combination of neutralization and Fenton reaction, Water Res.,
35 (2001) 2017–2021.
- N. Rodriguez, H.K. Hansen, P. Nuñez, J. Guzman, Spent caustic
oxidation using electro-generated Fenton’s reagent in a batch
reactor, J. Environ. Sci. Health, Part A, 43 (2008) 952–960.
- P. Nuñez, H.K. Hansen, N. Rodriguez, J. Guzman, C. Gutierrez,
Electrochemical generation of Fenton’s reagent to treat spent
caustic wastewater, Sep. Sci. Technol., 44 (2009) 2223–2233.
- Z.Z. Yu, D.Z. Sun, C.H. Li, P.F. Shi, X.D. Duan, G.R. Sun, J.X.
Liu, UV-catalytic treatment of spent caustic from ethene plant
with hydrogen peroxide and ozone oxidation, J. Environ. Sci.,
16 (2004) 272–275.
- A. Hawari, H. Ramadan, I. Abu-Reesh, M. Ouederni, A
comparative study of the treatment of ethylene plant spent
caustic by neutralization and classical and advanced oxidation,
J. Environ. Manage., 151 (2015) 105–112.
- A. Shy Sayid, M.A. Abu Hassan, Z. Zainon Noor, A. Aris,
Optimization of Photo-Fenton Oxidation of Sulfidic Spent
Caustic By Using Response Surface Methodology, National
Postgraduate Conference (NPC), 2011, pp. 1–7.
- C. Chen, Wet air oxidation and catalytic wet air oxidation for
refinery spent caustics degradation, J. Chem. Soc. Pak., 35 (2013)
244–250.
- M. Alaiezadeh, Spent Caustic Wastewater Treatment with
Electrical Coagulation Method, 1st International Conference of
Oil, Gas, Petrochemical and Power Plant, 2015.
- R. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response
Surface Methodology: Process and Product Optimization Using
Designed Experiments, John Wiley & Sons, Dubai, UAE, 2016.
- S. Haykin, Neural Networks: A Comprehensive Foundation,
Tsinghua University Press, Beijing, China, 2008.
- A. Rezaee, H. Masoumbeigi, R. Darvishi, A. Khataee, S.
Hashemian, Photocatalytic decolorization of methylene blue
using immobilized ZnO nanoparticles prepared by solution
combustion method, Desal. Wat. Treat., 44 (2012) 174–179.
- P. Bansal, N. Bhullar, D. Sud, Studies on photodegradation of
malachite green using TiO2/ZnO photocatalyst, Desal. Wat.
Treat., 12 (2009) 108–113.
- B. Divband, M. Khatamian, G.K. Eslamian, M. Darbandi,
Synthesis of Ag/ZnO nanostructures by different methods and
investigation of their photocatalytic efficiency for 4-nitrophenol
degradation, Appl. Surf. Sci., 284 (2013) 80–86.
- Z. Wang, Novel zinc oxide nanostructures discovery by electron
microscopy, J. Phys., 26 (2006) 1–7.
- A.Z. Khorsand, W.A. Majid, H.Z. Wang, R. Yousefi, A. Moradi
Golsheikh, Z.F. Ren, Sonochemical synthesis of hierarchical
ZnO nanostructures, Ultrason. Sonochem., 20 (2013) 395–400.
- J. Saucedo-Lucero, S. Arriaga, Photocatalytic degradation
of hexane vapors in batch and continuous systems using
impregnated ZnO nanoparticles, Chem. Eng. J., 218 (2013)
358–367.
- U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S.
Dogan, H. Morkoc, A comprehensive review of ZnO materials
and devices, J. Appl. Phys., 98 (2005) 11–19.
- J. Zhu, J.X. Zhang, H.F. Zhou, W.Q. Qin, L.Y. Chai, Y.H. Hu,
Microwave-assisted synthesis and characterization of ZnOnanorod
arrays, Trans. Nonferrous Met. Soc. China, 19 (2009)
1578–1582.
- H. Smida, B. Jamoussi, Degradation of nitroaromatic pollutant
by titanium dioxide/zinc phthalocyanine: study of the
influencing factors, IOSR J. Appl. Chem., 2 (2012) 7–11.
- K.M. Kumar, B.K. Mandal, E.A. Naidu, M. Sinha, K.S. Kumar,
P.S. Reddy, Synthesis and characterisation of flower shaped zinc
oxide nanostructures and its antimicrobial activity, Spectrochim.
Acta, Part A, 104 (2013) 171–174.
- S. Anandan, A. Vinu, T. Mori, N. Gokulakrishnan, P. Srinivasu,
V. Murugesan, K. Ariga, Photocatalytic degradation of
2,4,6-trichlorophenol using lanthanum doped ZnO in aqueous
suspension, Catal. Commun., 8 (2007) 1377–1382.
- R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes
with manganese-doped ZnO nanoparticles, J. Hazard. Mater.,
156 (2008) 194–200.
- R. Georgekutty, M.K. Seery, S.C. Pillai, A highly efficient
Ag-ZnO photocatalyst: synthesis, properties, and mechanism,
J. Phys. Chem., 112 (2008) 13563–13570.
- P. Sathishkumar, R. Sweena, J.J. Wu, S. Anandan, Synthesis
of CuO-ZnO nanophotocatalyst for visible light assisted
degradation of a textile dye in aqueous solution, Chem. Eng. J.,
171 (2011) 136–140.
- M. Nikazar, M. Rostami, The optimum conditions for
synthesis of Fe3O4/ZnO core/shell magnetic nanoparticles for
photodegradation of phenol, Iran. J. Environ. Health Sci. Eng.,
12 (2014) 21–30.
- D.L. Massart, B.G.M. Vandeginste, L.M.C. Buydens, S.D.E. Jong,
J. Lewi, P.J. Smeyers Verbeke, Handbook of Chemometrics and
Qualimetrics, Elsevier Science Inc., New York, NY, USA, 1997.
- V.A. Sakkas, M.A. Islam, C. Stalikas, T.A. Albanis, Photocatalytic
degradation using design of experiments: a review and example
of the Congo red degradation, J. Hazard. Mater., 175 (2010)
33–44.
- J. Rivera‐Utrilla, I. Bautista‐Toledo, M.A. Ferro‐García, C.
Moreno‐Castilla, Activated carbon surface modifications
by adsorption of bacteria and their effect on aqueous lead
adsorption, J. Chem. Technol. Biotechnol., 76 (2001) 1209–1215.
- American Public Health Association, Standard Methods for
the Examination of Water and Wastewater, APHA Publication,
2005.
- U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic
degradation of organic contaminants over titanium dioxide: a
review of fundamentals, progress, and problems, J. Photochem.
Photobiol., 9 (2008) 1–12.
- M. Evans, Optimization of manufacturing processes: a response
surface approach, Appl. Math. Optim. J., 791 (2003).
- S. Nazzal, M.A. Khan, Response surface methodology for the
optimization of ubiquinone self-nano emulsified drug delivery
system, AAPS Pharm. Sci. Technol., 3 (2002) 23–31.
- D. Ranjan, D. Mishra, S.H. Hasan, Bioadsorption of arsenic:
artificial neural networks and response surface methodological
approach, Ind. Eng. Chem. Res., 50 (2011) 9852–9863.
- R. Nelofer, R.N. Ramanan, R.N. Rahman, M. Basri, A.B. Ariff,
Comparison of the estimation capabilities of response surface
methodology and artificial neural network for the optimization
of recombinant lipase production by E. coli BL21, J. Ind.
Microbiol. Biotechnol., 39 (2012) 243–254.
- M. Antonopoulou, I. Konstantinou, Photocatalytic degradation
of pentachlorophenol by visible light Ν–F–TiO2 in the presence
of oxalate ions: optimization, modeling, and scavenging studies,
Environ. Sci. Pollut. Res., 22 (2015) 9438–9448.