References

  1. M. de Graaff, M.F.M. Bijmans, B. Abbas, G.J.W. Euverink, G. Muyzer, A.J.H. Janssen, Biological treatment of refinery spent caustics under halo-alkaline conditions, Bioresour. Technol., 102 (2011) 7257–7264.
  2. B. Kumfer, C. Felch, C. Maugans, Wet Air Oxidation Treatment of Spent Caustic in Petroleum Refineries, National Petrochemical and Refiners Association Conference, Phoenix, AZ, Vol. 23, 2010.
  3. T.M.S. Carlos, C.B. Maugans, Wet Air Oxidation of Refinery Spent Caustic: A Refinery Case Study, NPRA Conference, San Antonio, 2000.
  4. S.H. Sheu, H.S. Weng, Treatment of olefin plant spent caustic by combination of neutralization and Fenton reaction, Water Res., 35 (2001) 2017–2021.
  5. N. Rodriguez, H.K. Hansen, P. Nuñez, J. Guzman, Spent caustic oxidation using electro-generated Fenton’s reagent in a batch reactor, J. Environ. Sci. Health, Part A, 43 (2008) 952–960.
  6. P. Nuñez, H.K. Hansen, N. Rodriguez, J. Guzman, C. Gutierrez, Electrochemical generation of Fenton’s reagent to treat spent caustic wastewater, Sep. Sci. Technol., 44 (2009) 2223–2233.
  7. Z.Z. Yu, D.Z. Sun, C.H. Li, P.F. Shi, X.D. Duan, G.R. Sun, J.X. Liu, UV-catalytic treatment of spent caustic from ethene plant with hydrogen peroxide and ozone oxidation, J. Environ. Sci., 16 (2004) 272–275.
  8. A. Hawari, H. Ramadan, I. Abu-Reesh, M. Ouederni, A comparative study of the treatment of ethylene plant spent caustic by neutralization and classical and advanced oxidation, J. Environ. Manage., 151 (2015) 105–112.
  9. A. Shy Sayid, M.A. Abu Hassan, Z. Zainon Noor, A. Aris, Optimization of Photo-Fenton Oxidation of Sulfidic Spent Caustic By Using Response Surface Methodology, National Postgraduate Conference (NPC), 2011, pp. 1–7.
  10. C. Chen, Wet air oxidation and catalytic wet air oxidation for refinery spent caustics degradation, J. Chem. Soc. Pak., 35 (2013) 244–250.
  11. M. Alaiezadeh, Spent Caustic Wastewater Treatment with Electrical Coagulation Method, 1st International Conference of Oil, Gas, Petrochemical and Power Plant, 2015.
  12. R. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, Dubai, UAE, 2016.
  13. S. Haykin, Neural Networks: A Comprehensive Foundation, Tsinghua University Press, Beijing, China, 2008.
  14. A. Rezaee, H. Masoumbeigi, R. Darvishi, A. Khataee, S. Hashemian, Photocatalytic decolorization of methylene blue using immobilized ZnO nanoparticles prepared by solution combustion method, Desal. Wat. Treat., 44 (2012) 174–179.
  15. P. Bansal, N. Bhullar, D. Sud, Studies on photodegradation of malachite green using TiO2/ZnO photocatalyst, Desal. Wat. Treat., 12 (2009) 108–113.
  16. B. Divband, M. Khatamian, G.K. Eslamian, M. Darbandi, Synthesis of Ag/ZnO nanostructures by different methods and investigation of their photocatalytic efficiency for 4-nitrophenol degradation, Appl. Surf. Sci., 284 (2013) 80–86.
  17. Z. Wang, Novel zinc oxide nanostructures discovery by electron microscopy, J. Phys., 26 (2006) 1–7.
  18. A.Z. Khorsand, W.A. Majid, H.Z. Wang, R. Yousefi, A. Moradi Golsheikh, Z.F. Ren, Sonochemical synthesis of hierarchical ZnO nanostructures, Ultrason. Sonochem., 20 (2013) 395–400.
  19. J. Saucedo-Lucero, S. Arriaga, Photocatalytic degradation of hexane vapors in batch and continuous systems using impregnated ZnO nanoparticles, Chem. Eng. J., 218 (2013) 358–367.
  20. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, H. Morkoc, A comprehensive review of ZnO materials and devices, J. Appl. Phys., 98 (2005) 11–19.
  21. J. Zhu, J.X. Zhang, H.F. Zhou, W.Q. Qin, L.Y. Chai, Y.H. Hu, Microwave-assisted synthesis and characterization of ZnOnanorod arrays, Trans. Nonferrous Met. Soc. China, 19 (2009) 1578–1582.
  22. H. Smida, B. Jamoussi, Degradation of nitroaromatic pollutant by titanium dioxide/zinc phthalocyanine: study of the influencing factors, IOSR J. Appl. Chem., 2 (2012) 7–11.
  23. K.M. Kumar, B.K. Mandal, E.A. Naidu, M. Sinha, K.S. Kumar, P.S. Reddy, Synthesis and characterisation of flower shaped zinc oxide nanostructures and its antimicrobial activity, Spectrochim. Acta, Part A, 104 (2013) 171–174.
  24. S. Anandan, A. Vinu, T. Mori, N. Gokulakrishnan, P. Srinivasu, V. Murugesan, K. Ariga, Photocatalytic degradation of 2,4,6-trichlorophenol using lanthanum doped ZnO in aqueous suspension, Catal. Commun., 8 (2007) 1377–1382.
  25. R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, J. Hazard. Mater., 156 (2008) 194–200.
  26. R. Georgekutty, M.K. Seery, S.C. Pillai, A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism, J. Phys. Chem., 112 (2008) 13563–13570.
  27. P. Sathishkumar, R. Sweena, J.J. Wu, S. Anandan, Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution, Chem. Eng. J., 171 (2011) 136–140.
  28. M. Nikazar, M. Rostami, The optimum conditions for synthesis of Fe3O4/ZnO core/shell magnetic nanoparticles for photodegradation of phenol, Iran. J. Environ. Health Sci. Eng., 12 (2014) 21–30.
  29. D.L. Massart, B.G.M. Vandeginste, L.M.C. Buydens, S.D.E. Jong, J. Lewi, P.J. Smeyers Verbeke, Handbook of Chemometrics and Qualimetrics, Elsevier Science Inc., New York, NY, USA, 1997.
  30. V.A. Sakkas, M.A. Islam, C. Stalikas, T.A. Albanis, Photocatalytic degradation using design of experiments: a review and example of the Congo red degradation, J. Hazard. Mater., 175 (2010) 33–44.
  31. J. Rivera‐Utrilla, I. Bautista‐Toledo, M.A. Ferro‐García, C. Moreno‐Castilla, Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption, J. Chem. Technol. Biotechnol., 76 (2001) 1209–1215.
  32. American Public Health Association, Standard Methods for the Examination of Water and Wastewater, APHA Publication, 2005.
  33. U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress, and problems, J. Photochem. Photobiol., 9 (2008) 1–12.
  34. M. Evans, Optimization of manufacturing processes: a response surface approach, Appl. Math. Optim. J., 791 (2003).
  35. S. Nazzal, M.A. Khan, Response surface methodology for the optimization of ubiquinone self-nano emulsified drug delivery system, AAPS Pharm. Sci. Technol., 3 (2002) 23–31.
  36. D. Ranjan, D. Mishra, S.H. Hasan, Bioadsorption of arsenic: artificial neural networks and response surface methodological approach, Ind. Eng. Chem. Res., 50 (2011) 9852–9863.
  37. R. Nelofer, R.N. Ramanan, R.N. Rahman, M. Basri, A.B. Ariff, Comparison of the estimation capabilities of response surface methodology and artificial neural network for the optimization of recombinant lipase production by E. coli BL21, J. Ind. Microbiol. Biotechnol., 39 (2012) 243–254.
  38. M. Antonopoulou, I. Konstantinou, Photocatalytic degradation of pentachlorophenol by visible light Ν–F–TiO2 in the presence of oxalate ions: optimization, modeling, and scavenging studies, Environ. Sci. Pollut. Res., 22 (2015) 9438–9448.