References
- M. Aqil, I. Kita, A. Yano, S. Nishiyama, Neural networks for
real time catchment flow modeling and prediction, Water
Resour. Manage., 21(10) (2007) 1781–1796.
- E. Kentel, Estimation of river flow by artificial neural networks
and identification of input vectors susceptible to producing
unreliable flow estimates, J. Hydrology, 375(3–4) (2009) 481–
488.
- D. Solomatine, L.M. See, R.J. Abrahart, eds. Data-driven Modelling:
Concepts, Approaches and Experiences in Practical
Hydroinformatics, 2008, Springer Berlin Heidelberg. p. 17–30.
- O. Kisi, A.M. Nia, M.G. Gosheh, M.R.J. Tajabadi, A. Ahmadi,
Intermittent stream flow forecasting by using several data
driven techniques, Water Resour. Manage., 26(2) (2012) 457–474.
- E.B. Daniel, J.V. Camp, E.J. LeBoeuf, J.R. Penrod, J.P. Dobbins,
M.D. Abkowtz, Watershed modeling and its applications:
a state-of-the-art review, Open Hydrology J., 5 (2011)
26–50.
- M.E. Turan, M.A. Yurdusev, River flow estimation from
upstream flow records by artificial intelligence methods, J.
Hydrology, 369(1–2) (2009) 71–77.
- A. Bhadra, A. Bandyopadhyay, R. Singh, N.S. Raghuwanshi,
Rainfall-runoff modeling: comparison of two approaches with
different data requirements, Water Resour. Manage., 24(1)
(2010) 37–62.
- G.R. Rakhshanehroo, M. Vaghefi, M.M. Shafiee, Flood forecasting
in similar catchments using neural networks, Turkish
J. Eng. Environ. Sci., 34(1) (2010) 57–66.
- L.E. Besaw, D.M. Rizzo, P.R. Bierman, W.R. Hackett, Advances
in ungauged streamflow prediction using artificial neural networks,
J. Hydrology, 386(1–4) (2010) 27–37.
- E. Triana, J. Labadie, T. Gates, C. Anderson, Neural network
approach to stream-aquifer modeling for improved river basin
management, J. Hydrology, 391(3–4) (2010) 235–247.
- D. Edossa, M. Babel, Application of ANN-based streamflow
forecasting model for agricultural water management in the
Awash River basin, Ethiopia. Water Resour. Manage., 25(6)
(2011) 1759–1773.
- M. Sahu, K.K. Khatua, S.S. Mahapatra, A neural network
approach for prediction of discharge in straight compound open
channel flow, Flow Measure. Instrum., 22(5) (2011) 438–446.
- F. Machado, M. Mine, E. Kaviski, H. Fill, Monthly rainfall–runoff
modelling using artificial neural networks, Hydrol. Sci. J.,
56(3) (2011) 349–361.
- O. Kisi, C. Ozkan, B. Akay, Modeling discharge–sediment
relationship using neural networks with artificial bee colony
algorithm, J. Hydrology, 428–429(0) (2012) 94–103.
- S. Wei, H. Yang, J.X. Song, K. Abbaspour, Z.X. Zue, A wavelet-
neural network hybrid modelling approach for estimating
and predicting river monthly flows, Hydrol. Sci. J., 58(2) (2013)
374–389.
- J. Adamowski, K. Sun, Development of a coupled wavelet
transform and neural network method for flow forecasting of
non-perennial rivers in semi-arid watersheds, J. Hydrology,
390(1–2) (2010) 85–91.
- S.K. Jain, V.P. Singh, M.T. van Genuchten, Analysis of soil water
retention data using artificial neural networks, J. Hydrol. Eng.,
9(5) (2004) 415–420.
- D.B. May, M. Sivakumar, Prediction of urban stormwater quality
using artificial neural networks, Environ. Model. Software,
24(2) (2009) 296–302.
- Y.B. Dibike, D.P. Solomatine, River flow forecasting using artificial
neural networks, Phys. Chem. Earth, Part B: Hydrology,
Oceans Atmosphere, 26(1) (2001) 1–7.
- C.M. Lee, Master Plan Study on Flood Mitigation and River
Management for Sg. Selangor River Basin. 2002, Drainage and
Irrigation Department (DID) Malaysia.
- A.J. Hassan, A.A. Ghani, R. Abdullah, Development of Flood
Risk Map Using GIS for Sg. Selangor Basin., National Hydraulic
Research Institute of Malaysia: Malaysia.2004.
- R. Samsudin, P. Saad, A. Shabri, River flow time series using
least squares support vector machines, Hydrol. Earth Syst. Sci.,
15(6) (2011) 1835–1852.
- V. Subramaniam, Managing water supply in Selangor and
Kuala Lumpur, in Buletin Ingenieur. 2004, The Board of Engineers
Malaysia: 50580 Kuala Lumpur, Malaysia. p. 12–20.
- A. Shafie, Extreme Flood Event: A Case Study on Floods of
2006 and 2007 in Johor, Malaysia. 2009, Colorado State University:
Fort Collins, Colorado, USA.
- M.T.J.v. Breemen, Salt intrusion in the Selangor Estuary in
Malaysia. 2008, University of Twente: The Netherlands.
- W. Nelson, Bruce, An unusual turbidity maximum, in Proc.
Marine Science, C.W. Johan and K. Cees, eds., 2002, Elsevier. p.
483–497.
- M.K. Tiwari, C. Chatterjee, Development of an accurate and
reliable hourly flood forecasting model using wavelet–bootstrap–ANN (WBANN) hybrid approach, J. Hydrology, 394(3–4)
(2010) 458–470.
- H.R. Maier, G.C. Dandy, Neural networks for the prediction
and forecasting of water resources variables: a review of modelling
issues and applications, Environ. Model. Software, 15(1)
(2000) 101–124.
- M. Firat, Artificial intelligence techniques for river flow forecasting
in the Seyhan River catchment, Turkey. Hydrol. Earth
Syst. Sci. Discuss., 4(3) (2007) 1369–1406.
- K.P. Sudheer, A.K. Gosain, K.S. Ramasastri, A data-driven
algorithm for constructing artificial neural network rainfall-runoff models, Hydrol. Processes, 16(6) (2002) 1325–1330.
- M. Perugu, A. Singam, C. Kamasani, Multiple linear correlation
analysis of daily reference evapotranspiration, Water
Resour. Manage., 27(5) (2013) 1489–1500.