References
- J.D. Murphy, E. McKeogh, The benefits of integrated treatment of
wastes for the production of energy, Energy, 31 (2006) 294–310.
- P.T. Kelly, Z. He, Nutrients removal and recovery in bioelectrochemical
systems, a review, Bioresour. Technol., 153 (2014)
351–360.
- G. Venkatesh, R.A. Elmi, Economic environmental analysis
of handling biogas from sewage sludge digesters in WWTPs
(wastewater treatment plants) for energy recovery, case study of
Bekkelaget WWTP in Oslo (Norway), Energy, 58 (2013) 220–235.
- A.P. Faaij, J. Domac, Emerging international bio-energy markets
and opportunities for socio-economic development,
Energy Sustain. Develop., 10 (2006) 7–19.
- V.K. Tyagi, S.L. Lo, Sludge, A waste or renewable source for
energy and resources recovery? Renew. Sustain. Energy Rev.,
25 (2013) 708–728.
- H. Ren, H.S. Lee, J. Chae, Miniaturizing microbial fuel cells
for potential portable power sources, promises and challenges,
Microfluid. Nanofluid., 13 (2012) 353–381.
- S.H. Joo, F.D. Monaco, E. Antmann, P. Chorath, Sustainable
approaches for minimizing biosolids production and maximizing
reuse options in sludge management, A review, J. Environ.
Manage., 158 (2015) 133–145.
- Z. He, F. Zhang, Z. Ge, Using microbial fuel cells to treat raw
sludge and primary effluent for bioelectricity generation, final
report submitted for Veolia water north America, Milwaukee
metropolitan sewerage district, USA, 2013.
- L. Appels, J. Baeyens, J. Degreve, R. Dewil, Principles and
potential of the anaerobic digestion of waste-activated sludge,
Prog. Energy Combust. Sci., 34 (2008) 755–781.
- A.N. Ghadge, D.A. Jadhav, H. Pradhan, M.M. Ghangrekar,
Enhancing waste activated sludge digestion and power production
using hypochlorite as catholyte in clayware microbial
fuel cell, Bioresour. Technol., 182 (2015) 225–231.
- S. Pilli, T. More, S. Yan, R.D. Tyagi, R.Y. Surampalli, Anaerobic
digestion of thermal pre-treated sludge at different solids concentrations – Computation of mass-energy balance and greenhouse
gas emissions, J. Environ. Manage., 157 (2015) 250–261.
- A.K. Kurchania, Biomass Energy, In, C. Baskar, S. Baskar, R.
S. Dhillon, Biomass Conversion, Springer Berlin Heidelberg,
2012, pp. 91–122.
- Y. Liu, Chemically reduced excess sludge production in the
activated sludge process, Chemosphere, 50 (2003) 1–7.
- R. Cano, S.I. Perez-Elvira, F. Fdz-Polanco, Energy feasibility
study of sludge pretreatments, A review, Appl. Energy, 149
(2015) 176–185.
- B.E. Logan, Microbial Fuel Cell, John Wiley and Sons Incorporated
Publication, New Jersey, 2008.
- B.E. Logan, B. Min, S. Cheng, Electricity generation using
membrane and salt bridge microbial fuel cells, Water Res., 39
(2005) 1675–1686.
- B.E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller,
S. Freguia, K. Rabaey, Microbial fuel cells, methodology and
technology, Environ. Sci. Technol., 40 (2006) 5181–5192.
- Z. He, Y. Huang, A.K. Manohar, F. Mansfeld, Effect of electrolyte
pH on the rate of the anodic and cathodic reactions in an air-cathode
microbial fuel cell, Bioelectro chemistry, 74 (2008) 78–82.
- S.K. Dentel, B. Strogen, P. Chiu, Direct generation of electricity
from sludge and other liquid wastes, Wastewat. Sci. Technol.,
50 (2004) 161–168.
- Y. Lee, N. Nirmalakhandan, Electricity production in membrane-less microbial fuel cell fed with livestock organic solid
waste, Bioresour. Technol., 102 (2011) 5831–5835.
- F. Zhang, Z. Ge, J. Grimaud, J. Hurst, Z. He, In situ investigation
of tubular microbial fuel cells deployed in an aeration
tank at a municipal wastewater treatment plant, Bioresour.
Technol., 136 (2013) 316–321.
- H. Wang, Z.J. Ren, A comprehensive review of microbial electrochemical
systems as a platform technology, Biotechnol.
Adv., 31 (2013) 1796–1807.
- P. Aelterman, K. Rabaey, H.T. Pham, N. Boon, W. Verstraete,
Continuous electricity generation at high voltages and currents
using stacked microbial fuel cells, Environ. Sci. Technol.,
40 (2006) 3388–3394.
- R.A. Rozendal, H.V. Hamelers, K. Rabaey, J. Keller, C.J. Buisman,
Towards practical implementation of bioelectrochemical
wastewater treatment, Trends Biotechnol., 26 (2008) 450–459.
- Y. Zhang, I. Angelidaki, A new method for in situ nitrate
removal from groundwater using submerged microbial
desalination–denitrification cell (SMDDC), Water Res., 47
(2013) 1827–1836.
- B.E. Logan, K. Rabaey, Conversion of wastes into bioelectricity
and chemicals by using microbial electrochemical technologies,
Science, 337 (2012) 686–690.
- N. Birjandi, H. Younesi, A.A. Ghoreyshi, M. Rahimnejad, Electricity
generation through degradation of organic matters in
medicinal herbs wastewater using bio-electro-Fenton system,
J. Environ. Manage., 180 (2016) 390–400.
- A. Hussain, M. Manuel, B. Tartakovsky, A comparison of
simultaneous organic carbon and nitrogen removal in microbial
fuel cells and microbial electrolysis cells, J. Environ. Manage.,
173 (2016) 23–33.
- C. Jayashree, K. Tamilarasan, M. Rajkumar, P. Arulazhagan, K.
N. Yogalakshmi, M. Srikanth, J.R. Banu, Treatment of seafood
processing wastewater using upflow microbial fuel cell for
power generation and identification of bacterial community in
anodic biofilm, J. Environ. Manage., 180 (2014) 351–358.
- J. Choi, Y. Ahn, Increased power generation from primary
sludge in microbial fuel cells coupled with prefermentation,
Bioprocess. Biosyst. Eng., 37 (2014) 2549–2557.
- D. Pant, G.V. Bogaert, L. Diels, K. Vanbroekhoven, A review
of the substrates used in microbial fuel cells (MFCs) for sustainable
energy production, Bioresour. Technol., 101 (2010)
1533–1543.
- D.R. Lovley, The microbe electric, conversion of organic matter
to electricity, Curr. Opin. Biotechnol., 19 (2008) 564–571.
- F.S. Mjalli, S. Al-Asheh, H.E. Alfadala, Use of artificial neural
network black-box modeling for the prediction of wastewater
treatment plants performance, J. Environ. Manage., 83 (2007)
29–338.
- G.B. Gholikandi, H. Hazrati, H. Rostamian, An artificial neural
network model for the prediction of pressure filters performance
and determination of optimum turbidity for coliform
and total bacteria removal, J. Environ. Stud., (2012) 129–136.
- H.R. Tashaouie, G.B. Gholikandi, H. Hazrati, Artificial neural
network modeling for predict performance of pressure filters
in a water treatment plant, Desal. Water Treat., 39 (2012) 192–
198.
- G.B. Gholikandi, M. Delnavaz, R. Riahi, Use of artificial neural
network for prediction of coagulation/flocculation process
by PAC in water treatment plant, Environ. Eng. Manag. J., 10
(2011).
- S. Grieu, F. Thiery, A. Traoré, T.P. Nguyen, M. Barreau, M. Polit,
KSOM and MLP neural networks for on-line estimating the
efficiency of an activated sludge process, Chem. Eng. J., 116
(2006) 1–11.
- Y.S.T. Hong, M.R. Rosen, R. Bhamidimarri, Analysis of a
municipal wastewater treatment plant using a neural network-based pattern analysis, Water Res., 37 (2003) 1608–1618.
- G.S. Jadhav, M.M. Ghangrekar, Performance of microbial fuel
cell subjected to variation in pH, temperature, external load
and substrate concentration, Bioresour. Technol., 100 (2009)
717–723.
- S. Puig, M. Serra, M. Coma, M. Cabre, M.D. Balaguer, J.
Colprim, Effect of pH on nutrient dynamics and electricity
production using microbial fuel cells, Bioresour. Technol., 101
(2010) 9594–9599.
- B. Min, O.B. Roman, I. Angelidaki, Importance of temperature
and anodic medium composition on microbial fuel cell (MFC)
performance, Biotechnol. Lett., 30 (2008) 1213–1218.
- E. Martin, O. Savadogo, S.R. Guiot, B. Tartakovsky, The
influence of operational conditions on the performance of a
microbial fuel cell seeded with mesophilic anaerobic sludge,
Biochem. Eng. J., 51 (2010) 132–139.
- V. Vologni, R. Kakarla, I. Angelidaki, B. Min, Increased power
generation from primary sludge by a submersible microbial
fuel cell and optimum operational conditions, Bioprocess. Biosyst.
Eng., 36 (2013) 635–642.
- L. Metcalf, H.P. Eddy, G. Tchobanoglous, Wastewater Engineering:
Treatment, Disposal, and Reuse, McGraw-Hill, 2010.
- J. Jiang, Q. Zhao, J. Zhang, G. Zhang, D.J. Lee, Electricity generation
from bio-treatment of sewage sludge with microbial fuel
cell, Bioresour. Technol., 100 (2009) 5808–5812.
- American Public Health Association (APHA), Standard methods
for examination of water and wastewaters, 20th ed., US
Environmental Protection Agency, Washington D.C., 1999.
- J.C. Biffinger, J. Pietron, O. Bretschger, L.J. Nadeau, G.R. Johnson,
C.C. Williams, B.R. Ringeisen, The influence of acidity on
microbial fuel cells containing Shewanella oneidensis, Biosens.
Bioelectron., 24 (2008) 900–905.
- `S.N. Murthy, J.T. Novak, Factors affecting floc properties
during aerobic digestion: implications for dewatering, Water
Environ. Res., 71 (1999) 197–202.
- L. Zhuang, S. Zhou, Y. Li, Y. Yuan, Enhanced performance of
air-cathode two-chamber microbial fuel cells with high-pH
anode and low-pH cathode, Bioresour. Technol., 101 (2010)
3514–3519.
- J. Vesanto, SOM-based data visualization methods, Intell. Data
Anal., 3 (1999) 111–126.
- R. Margesin, J. Cimadom, F. Schinner, Biological activity
during composting of sewage sludge at low temperatures, Int.
Biodeterior. Biodegrad., 57 (2006) 88–92.
- B. Raduly, K.V. Gernaey, A.G. Capodaglio, P.S. Mikkelsen,
M. Henze, Artificial neural networks for rapid WWTP performance
evaluation: Methodology and case study, Environ.
Model. Softw., 22 (2007) 1208–1216.
- M.M. Hamed, M.G. Khalafallah, E.A. Hassanien, Prediction of
wastewater treatment plant performance using artificial neural
networks, Environ. Model. Softw., 19 (2004) 919–928.
- J.J. Montano, A. Palmer, Numeric sensitivity analysis applied
to feedforward neural networks, Neural. Comput. Appl., 12
(2003) 119–125.
- Z. He, N. Wagner, S.D. Minteer, L.T. Angenent, An upflow
microbial fuel cell with an interior cathode: assessment of the
internal resistance by impedance spectroscopy, Environ. Sci.
Technol., 40 (2006) 5212–5217.
- Y. Fan, E. Sharbrough, H. Liu, Quantification of the internal
resistance distribution of microbial fuel cells, Environ. Sci.
Technol., 42 (2008) 8101–8107.
- P. Liang, X. Huang, M.Z. Fan, X.X. Cao, C. Wang, Composition
and distribution of internal resistance in three types of microbial
fuel cells, Appl. Microbiol. Biotechnol., 77 (2007) 551–558.
- P.Y. Zhang, Z.L. Liu, Experimental study of the microbial fuel
cell internal resistance, J. Power Sources, 195 (2010) 8013–8018.
- H.R. Sadabad, G.B. Gholikandi, Harvesting direct electricity
from municipal waste-activated sludge simultaneous with its
aerobic stabilization process, Investigation and optimization,
J. Environ. Chem. Eng., 5 (2017) 1174–1185.
- B.E. Logan, J.M. Regan, Electricity-producing bacterial communities
in microbial fuel cells, Trends Microbiol., 14 (2006)
512–518.
- H. Liu, B.E. Logan, Electricity generation using an air-cathode
single chamber microbial fuel cell in the presence and absence
of a proton exchange membrane, Environ. Sci. Technol., 38
(2004) 4040–4046.
- H. Liu, S. Cheng, B.E. Logan, Power generation in fed-batch
microbial fuel cells as a function of ionic strength, temperature,
and reactor configuration, Environ. Sci. Technol., 39
(2005) 5488–5493.
- W.J. Jewell, R.M. Kabrick, Autoheated aerobic thermophilic
digestion with aeration, J. Water Pollut. Control. Fed., (1980)
512–523.
- N. Beales, Adaptation of microorganisms to cold temperatures,
weak acid preservatives, low pH, and osmotic stress: a
review. Comp. Rev. Food Sci. Food Safe., 3 (2004) 1–20.
- S. Cheng, H. Liu, B.E. Logan, Power densities using different
cathode catalysts (Pt and CoTMPP) and polymer binders
(Nafion and PTFE) in single chamber microbial fuel cells,
Environ. Sci. Technol., 40 (2006) 364–369.
- B. Erable, N. Duteanu, S.S. Kumar, Y. Feng, M.M. Ghangrekar,
K. Scott, Nitric acid activation of graphite granules to increase
the performance of the non-catalyzed oxygen reduction reaction
(ORR) for MFC applications, Electrochem. Commun., 11
(2009) 1547–1549.
- S. Cheng, P. Kiely, B.E. Logan, Pre-acclimation of a wastewater
inoculum to cellulose in an aqueous–cathode MEC improves
power generation in air–cathode MFCs, Bioresour. Technol.,
102 (2011) 367–371.
- S.E. Oh, J.R. Kim, J.H. Joo, B.E. Logan, Effects of applied voltages
and dissolved oxygen on sustained power generation by
microbial fuel cells, Water Sci. Technol., 60 (2009) 1311–1317.
- B.M. Wilen, J.L. Nielsen, K. Keiding, P.H. Nielsen, Influence of
microbial activity on the stability of activated sludge flocs, Colloids
Surf., 18 (2000) 145–156.
- H.N. Gavala, U. Yenal, I.V. Skiadas, P. Westermann, B.K.
Ahring, Mesophilic and thermophilic anaerobic digestion of
primary and secondary sludge, Effect of pre-treatment at elevated
temperature, Water Res., 37 (2003) 4561–4572.
- H.A. Painter, J.E. Loveless, Effect of temperature and pH value
on the growth-rate constants of nitrifying bacteria in the activated-sludge process, Water Res., 17 (1983) 237–248.
- A. Larrosa-Guerrero, K. Scott, K.P. Katuri, C. Godinez, I.M.
Head, T. Curtis, Open circuit versus closed circuit enrichment
of anodic biofilms in MFC: effect on performance and anodic
communities, Appl. Microbiol. Biotechnol., 87 (2010) 1699–1713.
- Belafi-Bako, B. Vajda, N. Nemestothy, Study on operation of a
microbial fuel cell using mesophilic anaerobic sludge, Desal.
Water. Treat., 35 (2011) 222–226.
- Z. He, J. Kan, Y. Wang, Y. Huang, F. Mansfeld, K.H. Nealson,
Electricity production coupled to ammonium in a microbial
fuel cell, Environ. Sci. Technol., 43 (2009) 3391–3397.
- H. Wang, J.D. Park, Z. Ren, Active energy harvesting from
microbial fuel cells at the maximum power point without
using resistors, Environ. Sci. Technol., 46 (2012) 5247–5252.
- H.J. Mansoorian, A.H. Mahvi, A.J. Jafari, N. Khanjani, Evaluation
of dairy industry wastewater treatment and simultaneous
bioelectricity generation in a catalyst-less and mediator-less
membrane microbial fuel cell, J. Saudi Chem. Society, 20 (2016)
88–100.
- H.J. Mansoorian, A.H. Mahvi, A.J. Jafari, Bioelectricity generation
using two chamber microbial fuel cell treating wastewater
from food processing, Enzyme Microbiol Technol., (2013)
352–357.
- S.A. Pati, V.P. Surakasi, S. Koul, S. Ijmulwar, A. Vivek, Y.S.
Shouche, Electricity generation using chocolate industry
wastewater and its treatment in activated sludge based
microbial fuel cell and analysis of developed microbial community
in the anode chamber, Bioresour. Technol., (2009)
5132–5139.
- J.R. Kim, S.H. Jung, J.M. Regan, B.E. Logan, Electricity generation
and microbial community analysis of alcohols powered
microbial fuel cells, Bioresour. Technol., (2007) 2568–2577.
- W.J. H, C.G. Niu, Y. Wang, G.M. Zeng, Z. Wu, Nitrogenous heterocyclic
compounds degradation in the microbial fuel cells,
Process Saf. Environ., (2011) 133–40.
- P.T. Ha, B. Tae, I.S. Chang, Performance and bacterial consortium
of microbial fuel cell fed with formate, Energy Fuel,
(2008) 164–168.
- P.D. Kiely, G. Rader, J.M. Regan, B.E. Logan, Long-term cathode
performance and the microbial communities that develop
in microbial fuel cells fed different fermentation endproducts,
Bioresour. Technol., (2011) 361–366.
- Y. Luo, G. Liu, R. Zhang, C. Zhang, Power generation from
furfural using the microbial fuel cell, J Power Sources, (2010)
190–194.
- X. Guo, Y. Zhan, C. Chen, B. Cai, Y. Wang, S. Guo, Influence of
packing material characteristics on the performance of microbial
fuel cells using petroleum refinery wastewater as fuel,
Renew. Energy, (2016) 437–444.