References

  1. J.D. Murphy, E. McKeogh, The benefits of integrated treatment of wastes for the production of energy, Energy, 31 (2006) 294–310.
  2. P.T. Kelly, Z. He, Nutrients removal and recovery in bioelectrochemical systems, a review, Bioresour. Technol., 153 (2014) 351–360.
  3. G. Venkatesh, R.A. Elmi, Economic environmental analysis of handling biogas from sewage sludge digesters in WWTPs (wastewater treatment plants) for energy recovery, case study of Bekkelaget WWTP in Oslo (Norway), Energy, 58 (2013) 220–235.
  4. A.P. Faaij, J. Domac, Emerging international bio-energy markets and opportunities for socio-economic development, Energy Sustain. Develop., 10 (2006) 7–19.
  5. V.K. Tyagi, S.L. Lo, Sludge, A waste or renewable source for energy and resources recovery? Renew. Sustain. Energy Rev., 25 (2013) 708–728.
  6. H. Ren, H.S. Lee, J. Chae, Miniaturizing microbial fuel cells for potential portable power sources, promises and challenges, Microfluid. Nanofluid., 13 (2012) 353–381.
  7. S.H. Joo, F.D. Monaco, E. Antmann, P. Chorath, Sustainable approaches for minimizing biosolids production and maximizing reuse options in sludge management, A review, J. Environ. Manage., 158 (2015) 133–145.
  8. Z. He, F. Zhang, Z. Ge, Using microbial fuel cells to treat raw sludge and primary effluent for bioelectricity generation, final report submitted for Veolia water north America, Milwaukee metropolitan sewerage district, USA, 2013.
  9. L. Appels, J. Baeyens, J. Degreve, R. Dewil, Principles and potential of the anaerobic digestion of waste-activated sludge, Prog. Energy Combust. Sci., 34 (2008) 755–781.
  10. A.N. Ghadge, D.A. Jadhav, H. Pradhan, M.M. Ghangrekar, Enhancing waste activated sludge digestion and power production using hypochlorite as catholyte in clayware microbial fuel cell, Bioresour. Technol., 182 (2015) 225–231.
  11. S. Pilli, T. More, S. Yan, R.D. Tyagi, R.Y. Surampalli, Anaerobic digestion of thermal pre-treated sludge at different solids concentrations – Computation of mass-energy balance and greenhouse gas emissions, J. Environ. Manage., 157 (2015) 250–261.
  12. A.K. Kurchania, Biomass Energy, In, C. Baskar, S. Baskar, R. S. Dhillon, Biomass Conversion, Springer Berlin Heidelberg, 2012, pp. 91–122.
  13. Y. Liu, Chemically reduced excess sludge production in the activated sludge process, Chemosphere, 50 (2003) 1–7.
  14. R. Cano, S.I. Perez-Elvira, F. Fdz-Polanco, Energy feasibility study of sludge pretreatments, A review, Appl. Energy, 149 (2015) 176–185.
  15. B.E. Logan, Microbial Fuel Cell, John Wiley and Sons Incorporated Publication, New Jersey, 2008.
  16. B.E. Logan, B. Min, S. Cheng, Electricity generation using membrane and salt bridge microbial fuel cells, Water Res., 39 (2005) 1675–1686.
  17. B.E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, K. Rabaey, Microbial fuel cells, methodology and technology, Environ. Sci. Technol., 40 (2006) 5181–5192.
  18. Z. He, Y. Huang, A.K. Manohar, F. Mansfeld, Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell, Bioelectro chemistry, 74 (2008) 78–82.
  19. S.K. Dentel, B. Strogen, P. Chiu, Direct generation of electricity from sludge and other liquid wastes, Wastewat. Sci. Technol., 50 (2004) 161–168.
  20. Y. Lee, N. Nirmalakhandan, Electricity production in membrane-less microbial fuel cell fed with livestock organic solid waste, Bioresour. Technol., 102 (2011) 5831–5835.
  21. F. Zhang, Z. Ge, J. Grimaud, J. Hurst, Z. He, In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant, Bioresour. Technol., 136 (2013) 316–321.
  22. H. Wang, Z.J. Ren, A comprehensive review of microbial electrochemical systems as a platform technology, Biotechnol. Adv., 31 (2013) 1796–1807.
  23. P. Aelterman, K. Rabaey, H.T. Pham, N. Boon, W. Verstraete, Continuous electricity generation at high voltages and currents using stacked microbial fuel cells, Environ. Sci. Technol., 40 (2006) 3388–3394.
  24. R.A. Rozendal, H.V. Hamelers, K. Rabaey, J. Keller, C.J. Buisman, Towards practical implementation of bioelectrochemical wastewater treatment, Trends Biotechnol., 26 (2008) 450–459.
  25. Y. Zhang, I. Angelidaki, A new method for in situ nitrate removal from groundwater using submerged microbial desalination–denitrification cell (SMDDC), Water Res., 47 (2013) 1827–1836.
  26. B.E. Logan, K. Rabaey, Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies, Science, 337 (2012) 686–690.
  27. N. Birjandi, H. Younesi, A.A. Ghoreyshi, M. Rahimnejad, Electricity generation through degradation of organic matters in medicinal herbs wastewater using bio-electro-Fenton system, J. Environ. Manage., 180 (2016) 390–400.
  28. A. Hussain, M. Manuel, B. Tartakovsky, A comparison of simultaneous organic carbon and nitrogen removal in microbial fuel cells and microbial electrolysis cells, J. Environ. Manage., 173 (2016) 23–33.
  29. C. Jayashree, K. Tamilarasan, M. Rajkumar, P. Arulazhagan, K. N. Yogalakshmi, M. Srikanth, J.R. Banu, Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm, J. Environ. Manage., 180 (2014) 351–358.
  30. J. Choi, Y. Ahn, Increased power generation from primary sludge in microbial fuel cells coupled with prefermentation, Bioprocess. Biosyst. Eng., 37 (2014) 2549–2557.
  31. D. Pant, G.V. Bogaert, L. Diels, K. Vanbroekhoven, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Bioresour. Technol., 101 (2010) 1533–1543.
  32. D.R. Lovley, The microbe electric, conversion of organic matter to electricity, Curr. Opin. Biotechnol., 19 (2008) 564–571.
  33. F.S. Mjalli, S. Al-Asheh, H.E. Alfadala, Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance, J. Environ. Manage., 83 (2007) 29–338.
  34. G.B. Gholikandi, H. Hazrati, H. Rostamian, An artificial neural network model for the prediction of pressure filters performance and determination of optimum turbidity for coliform and total bacteria removal, J. Environ. Stud., (2012) 129–136.
  35. H.R. Tashaouie, G.B. Gholikandi, H. Hazrati, Artificial neural network modeling for predict performance of pressure filters in a water treatment plant, Desal. Water Treat., 39 (2012) 192– 198.
  36. G.B. Gholikandi, M. Delnavaz, R. Riahi, Use of artificial neural network for prediction of coagulation/flocculation process by PAC in water treatment plant, Environ. Eng. Manag. J., 10 (2011).
  37. S. Grieu, F. Thiery, A. Traoré, T.P. Nguyen, M. Barreau, M. Polit, KSOM and MLP neural networks for on-line estimating the efficiency of an activated sludge process, Chem. Eng. J., 116 (2006) 1–11.
  38. Y.S.T. Hong, M.R. Rosen, R. Bhamidimarri, Analysis of a municipal wastewater treatment plant using a neural network-based pattern analysis, Water Res., 37 (2003) 1608–1618.
  39. G.S. Jadhav, M.M. Ghangrekar, Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration, Bioresour. Technol., 100 (2009) 717–723.
  40. S. Puig, M. Serra, M. Coma, M. Cabre, M.D. Balaguer, J. Colprim, Effect of pH on nutrient dynamics and electricity production using microbial fuel cells, Bioresour. Technol., 101 (2010) 9594–9599.
  41. B. Min, O.B. Roman, I. Angelidaki, Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance, Biotechnol. Lett., 30 (2008) 1213–1218.
  42. E. Martin, O. Savadogo, S.R. Guiot, B. Tartakovsky, The influence of operational conditions on the performance of a microbial fuel cell seeded with mesophilic anaerobic sludge, Biochem. Eng. J., 51 (2010) 132–139.
  43. V. Vologni, R. Kakarla, I. Angelidaki, B. Min, Increased power generation from primary sludge by a submersible microbial fuel cell and optimum operational conditions, Bioprocess. Biosyst. Eng., 36 (2013) 635–642.
  44. L. Metcalf, H.P. Eddy, G. Tchobanoglous, Wastewater Engineering: Treatment, Disposal, and Reuse, McGraw-Hill, 2010.
  45. J. Jiang, Q. Zhao, J. Zhang, G. Zhang, D.J. Lee, Electricity generation from bio-treatment of sewage sludge with microbial fuel cell, Bioresour. Technol., 100 (2009) 5808–5812.
  46. American Public Health Association (APHA), Standard methods for examination of water and wastewaters, 20th ed., US Environmental Protection Agency, Washington D.C., 1999.
  47. J.C. Biffinger, J. Pietron, O. Bretschger, L.J. Nadeau, G.R. Johnson, C.C. Williams, B.R. Ringeisen, The influence of acidity on microbial fuel cells containing Shewanella oneidensis, Biosens. Bioelectron., 24 (2008) 900–905.
  48. `S.N. Murthy, J.T. Novak, Factors affecting floc properties during aerobic digestion: implications for dewatering, Water Environ. Res., 71 (1999) 197–202.
  49. L. Zhuang, S. Zhou, Y. Li, Y. Yuan, Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode, Bioresour. Technol., 101 (2010) 3514–3519.
  50. J. Vesanto, SOM-based data visualization methods, Intell. Data Anal., 3 (1999) 111–126.
  51. R. Margesin, J. Cimadom, F. Schinner, Biological activity during composting of sewage sludge at low temperatures, Int. Biodeterior. Biodegrad., 57 (2006) 88–92.
  52. B. Raduly, K.V. Gernaey, A.G. Capodaglio, P.S. Mikkelsen, M. Henze, Artificial neural networks for rapid WWTP performance evaluation: Methodology and case study, Environ. Model. Softw., 22 (2007) 1208–1216.
  53. M.M. Hamed, M.G. Khalafallah, E.A. Hassanien, Prediction of wastewater treatment plant performance using artificial neural networks, Environ. Model. Softw., 19 (2004) 919–928.
  54. J.J. Montano, A. Palmer, Numeric sensitivity analysis applied to feedforward neural networks, Neural. Comput. Appl., 12 (2003) 119–125.
  55. Z. He, N. Wagner, S.D. Minteer, L.T. Angenent, An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy, Environ. Sci. Technol., 40 (2006) 5212–5217.
  56. Y. Fan, E. Sharbrough, H. Liu, Quantification of the internal resistance distribution of microbial fuel cells, Environ. Sci. Technol., 42 (2008) 8101–8107.
  57. P. Liang, X. Huang, M.Z. Fan, X.X. Cao, C. Wang, Composition and distribution of internal resistance in three types of microbial fuel cells, Appl. Microbiol. Biotechnol., 77 (2007) 551–558.
  58. P.Y. Zhang, Z.L. Liu, Experimental study of the microbial fuel cell internal resistance, J. Power Sources, 195 (2010) 8013–8018.
  59. H.R. Sadabad, G.B. Gholikandi, Harvesting direct electricity from municipal waste-activated sludge simultaneous with its aerobic stabilization process, Investigation and optimization, J. Environ. Chem. Eng., 5 (2017) 1174–1185.
  60. B.E. Logan, J.M. Regan, Electricity-producing bacterial communities in microbial fuel cells, Trends Microbiol., 14 (2006) 512–518.
  61. H. Liu, B.E. Logan, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol., 38 (2004) 4040–4046.
  62. H. Liu, S. Cheng, B.E. Logan, Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration, Environ. Sci. Technol., 39 (2005) 5488–5493.
  63. W.J. Jewell, R.M. Kabrick, Autoheated aerobic thermophilic digestion with aeration, J. Water Pollut. Control. Fed., (1980) 512–523.
  64. N. Beales, Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Comp. Rev. Food Sci. Food Safe., 3 (2004) 1–20.
  65. S. Cheng, H. Liu, B.E. Logan, Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells, Environ. Sci. Technol., 40 (2006) 364–369.
  66. B. Erable, N. Duteanu, S.S. Kumar, Y. Feng, M.M. Ghangrekar, K. Scott, Nitric acid activation of graphite granules to increase the performance of the non-catalyzed oxygen reduction reaction (ORR) for MFC applications, Electrochem. Commun., 11 (2009) 1547–1549.
  67. S. Cheng, P. Kiely, B.E. Logan, Pre-acclimation of a wastewater inoculum to cellulose in an aqueous–cathode MEC improves power generation in air–cathode MFCs, Bioresour. Technol., 102 (2011) 367–371.
  68. S.E. Oh, J.R. Kim, J.H. Joo, B.E. Logan, Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells, Water Sci. Technol., 60 (2009) 1311–1317.
  69. B.M. Wilen, J.L. Nielsen, K. Keiding, P.H. Nielsen, Influence of microbial activity on the stability of activated sludge flocs, Colloids Surf., 18 (2000) 145–156.
  70. H.N. Gavala, U. Yenal, I.V. Skiadas, P. Westermann, B.K. Ahring, Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge, Effect of pre-treatment at elevated temperature, Water Res., 37 (2003) 4561–4572.
  71. H.A. Painter, J.E. Loveless, Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated-sludge process, Water Res., 17 (1983) 237–248.
  72. A. Larrosa-Guerrero, K. Scott, K.P. Katuri, C. Godinez, I.M. Head, T. Curtis, Open circuit versus closed circuit enrichment of anodic biofilms in MFC: effect on performance and anodic communities, Appl. Microbiol. Biotechnol., 87 (2010) 1699–1713.
  73. Belafi-Bako, B. Vajda, N. Nemestothy, Study on operation of a microbial fuel cell using mesophilic anaerobic sludge, Desal. Water. Treat., 35 (2011) 222–226.
  74. Z. He, J. Kan, Y. Wang, Y. Huang, F. Mansfeld, K.H. Nealson, Electricity production coupled to ammonium in a microbial fuel cell, Environ. Sci. Technol., 43 (2009) 3391–3397.
  75. H. Wang, J.D. Park, Z. Ren, Active energy harvesting from microbial fuel cells at the maximum power point without using resistors, Environ. Sci. Technol., 46 (2012) 5247–5252.
  76. H.J. Mansoorian, A.H. Mahvi, A.J. Jafari, N. Khanjani, Evaluation of dairy industry wastewater treatment and simultaneous bioelectricity generation in a catalyst-less and mediator-less membrane microbial fuel cell, J. Saudi Chem. Society, 20 (2016) 88–100.
  77. H.J. Mansoorian, A.H. Mahvi, A.J. Jafari, Bioelectricity generation using two chamber microbial fuel cell treating wastewater from food processing, Enzyme Microbiol Technol., (2013) 352–357.
  78. S.A. Pati, V.P. Surakasi, S. Koul, S. Ijmulwar, A. Vivek, Y.S. Shouche, Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber, Bioresour. Technol., (2009) 5132–5139.
  79. J.R. Kim, S.H. Jung, J.M. Regan, B.E. Logan, Electricity generation and microbial community analysis of alcohols powered microbial fuel cells, Bioresour. Technol., (2007) 2568–2577.
  80. W.J. H, C.G. Niu, Y. Wang, G.M. Zeng, Z. Wu, Nitrogenous heterocyclic compounds degradation in the microbial fuel cells, Process Saf. Environ., (2011) 133–40.
  81. P.T. Ha, B. Tae, I.S. Chang, Performance and bacterial consortium of microbial fuel cell fed with formate, Energy Fuel, (2008) 164–168.
  82. P.D. Kiely, G. Rader, J.M. Regan, B.E. Logan, Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts, Bioresour. Technol., (2011) 361–366.
  83. Y. Luo, G. Liu, R. Zhang, C. Zhang, Power generation from furfural using the microbial fuel cell, J Power Sources, (2010) 190–194.
  84. X. Guo, Y. Zhan, C. Chen, B. Cai, Y. Wang, S. Guo, Influence of packing material characteristics on the performance of microbial fuel cells using petroleum refinery wastewater as fuel, Renew. Energy, (2016) 437–444.