References
- F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:
A review, J. Environ. Manage., 92 (2011) 407–418.
- A.M. Patel, R.G. Patel, M.P. Patel, Nickel and copper
removal study from aqueous solution using new cationic
poly[acrylamide/N,N-DAMB/N,N-DAPB] super absorbent
hydrogel, J. Appl. Polymer Sci., 119 (2011) 2485–2493.
- S. Chen, Q. Yue, B. Gao, X. Xu, Equilibrium and kinetic
adsorption study of the adsorptive removal of Cr(VI) using
modified wheat residue, J. Col. Interf. Sci., 349 (2010) 256–264.
- I. Ali, New generation adsorbents for water treatment, Chem.
Rev., 112 (2012) 5073−5091.
- G. Güçlü, E. Al, S. Emik, T.B. İyim, S. Özgümüş, M. Özyürek,
Removal of Cu2+ and Pb2+ ions from aqueous solutions by
starch-graft-acrylic acid/montmorillonite superabsorbent
nanocomposite hydrogels, Polym. Bull., 65 (2010) 333–346.
- Q. Zhu, Z. Li, Hydrogel-supported nanosized hydrous
manganese dioxide: Synthesis, characterization, and
adsorption behavior study for Pb2+, Cu2+, Cd2+ and Ni2+ removal
from water, Chem. Eng. J., 281 (2015) 69–80.
- L. Jiang, P. Liu, S. Zhao, Magnetic ATP/FA/Poly(AA-co-AM)
ternary nanocomposite microgel as selective adsorbent for
removal of heavy metals from wastewater, Colloids
Surfaces A: Physicochem. Eng. Aspects, 470 (2015) 31–38.
- A. Gopalakrishnan, R. Krishnan, S. Thangavel, G. Venugopal,
S.J. Kim, Removal of heavy metal ions from pharma-effluents
using graphene-oxide nanosorbents and study of their
adsorption kinetics, J. Ind. Eng. Chem., 30 (2015) 14–19.
- Y. Zhang, F. He, X. Li, Three-dimensional composite hydrogel
based on polyamine zirconium oxide, alginate and tannic acid
with high performance for Pb(II), Hg(II) and Cr(VI) trapping,
J. Taiwan Inst. Chem. Eng., 65 (2016) 304–311.
- C.W. Phetphaisit, S. Yuanyang, W.C. Chaiyasith,
Polyacrylamido-2-methyl-1-propane sulfonic acid-graftednatural
rubber as bio-adsorbent for heavy metal removal
from aqueous standard solution and industrial wastewater, J.
Hazard. Mater., 301 (2016) 163–171.
- M. Khan, I.M.C. Lo, A holistic review of hydrogel applications
in the adsorptive removal of aqueous pollutants: Recent
progress, challenges, and perspectives, Water Res., 106 (2016)
259–271.
- O. Ozay, S. Ekici, Y. Baran, N. Aktas, N. Sahiner, Removal of
toxic metal ions with magnetic hydrogels, Water Res., 43(17)
(2009) 4403–4411.
- H. Kasgoz, S. Özgümüs¸ M. Orbay, Modified polyacrylamide
hydrogels and their application in removal of heavy metal
ions, Polymer, 44(6) (2003) 1785–1793.
- S.J. Buwalda, K.W. Boere, P.J. Dijkstra, J. Feijen, T. Vermonden,
W.E. Hennink, Hydrogels in a historical perspective: from
simple networks to smart materials, J. Control Release, 190
(2014) 254–273.
- M.A. Barakat, N. Sahiner, Cationic hydrogels for toxic arsenate
removal from aqueous environment, J. Environ. Manage., 88
(2008) 955–961.
- N. Sezgin, N. Balkaya, Adsorption of heavy metals from
industrial wastewater by using polyacrylic acid hydrogel,
Desal. Water Treat., 57(6) (2016) 2466–2480.
- J.C.Y. Ng, W.H. Cheung, G. Mckay, Equilibrium studies for the
sorption of lead from effluents using chitosan, Chemosphere,
52 (2003) 1021–1030.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1908) 1361–1403.
- H.M.F. Freundlich, Ueber die Adsorption in Loesungen, Z.
Phys. Chem., 57 (1906) 385–470.
- Y.S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- X. Zhao, G. Zhang, Q. Jia, C. Zhao, W. Zhou, W. Li, Adsorption
of Cu(II), Pb(II), Co(II), Ni(II), and Cd(II) from aqueous
solution by poly(aryl ether ketone) containing pendant
carboxyl groups (PEK-L), Chem. Eng. J., 171 (2011) 152–158.
- S.S. Baral, D. Namrata, G. Roy, S.N. Chaudhury, Das, A
preliminary study on the adsorptive removal of Cr(V) using
seaweed, Hydrilla verticillata, J. Hazard. Mater., 171 (2009)
358–369.
- S. Lagergren, Zur theorie der sogenannten adsorption gelöster
stoffe, Kungliga Svenska Vetenskapsakademiens, Handlingar,
24(4) (1898) 1–39.
- K.K. Singh, R. Rastogi, S.H. Hasan, Removal of Cr(VI) from
wastewater using rice bran, J. Col. Interf. Sci., 290 (2005) 61–68.
- H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and
thermodynamics of cadmium ion removal by adsorption onto
nano zerovalent iron particles, J. Hazard. Mater., 186 (2011)
458–465.
- P. Chingombe, B. Saha, R.J. Wakeman, Sorption of atrazine on
conventional and surface modified activated carbons, J. Col.
Interf. Sci., 302 (2006) 408–416.
- S.I.H. Taqvi, S.M. Hasany, M.Q. Bhanger, Sorption profile of
Cd(II) ions onto beach sand from aqueous solutions, J. Hazard.
Mater., 141 (2007) 37–44.
- D. Kavitha, C. Namasivayam, Experimental and kinetic
studies on methylene blue adsorption by coir pith carbon,
Biores. Tech., 98 (2007) 14–21.
- A. Ozcan, A.S. Ozcan, O. Gok, Adsorption kinetics and
isotherms of anionic dye of reactive blue 19 from aqueous
solutions onto DTMA-sepiolite, in: A.A. Lewinsky (Ed.),
Hazardous Materials and Wastewater-Treatment, Removal
and Analysis, Nova Science Publishers, New York, 2007.
- E.I. Unuabonah, K.O. Adebowale, B.I. Olu-Owolabi, Kinetic
and thermodynamic studies of the adsorption of lead(II) ions
onto phosphate-modified kaolinite clay, J. Hazard. Mater., 144
(2007) 386–395.
- F.C. Wu, R.L. Tseng, R.S. Juang, Initial behavior of intraparticle
diffusion model used in the description of adsorption kinetics,
Chem. Eng. J., 153 (2009) 1–8.
- N.H. Bhatti, R. Khalid, M.A. Hanif, Dynamic biosorption of
Zn(II) and Cu(II) using pretreated Rosa gruss an teplitz (red
rose) distillation sludge, Chem. Eng. J., 148 (2009) 434–443.
- S. Babel, T.A. Kurniawan, Cr(VI) removal from synthetic
wastewater using coconut shell charcoal and commercial
activated carbon modified with oxidizing agents and/or
chitosan, Chemosphere, 54(7) (2004) 951–967.
- H.A. Essawy, H.S. Ibrahim, Synthesis and characterization
of poly(vinylpyrrolidone-co-methylacrylate) hydrogel for
removal and recovery of heavy metal ions from wastewater,
React. Funct. Polym., 61 (2004) 421–432.
- E. Malkoç, Y. Nuhoğlu, Removal of Ni(II) ions from aqueous
solutions using waste of tea factory: Adsorption on a fixed-bed
column, J. Hazard. Mater. B1, 35 (2006) 328–336.
- N. Wu, Z. Li, Synthesis and characterization of poly(HEA/MALA) hydrogel and its application in removal of heavy metal
ions from water, Chem. Eng. J., 215–216 (2013) 894–902.
- A.M. Atta, H.S. Ismail, H.M. Mohamed, Z.M. Mohamed,
Acrylonitrile/acrylamidoxime/2-acrylamido-2-methylpropane
sulfonic acid-based hydrogels: Synthesis, characterization and
their application in the removal of heavy metals, J. App. Poly.
Sci., 122 (2011) 999–1011.
- S. Yang, S. Fu, H. Liu, Y. Zhou, X. Li, Hydrogel beads based on
carboxymetyl cellulose for removal heavy metal ions, J. App.
Poly. Sci., 119 (2011) 1204–1210.
- S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy
metals uptake from contaminated water: Areview, J. Hazard.
Mater., 97 (2003) 219–243.
- V. Chantawong, N.W. Harvey, V.N. Bashkin, Comparison of
heavy metal adsorptions by Thai kaolin and ballclay, Water
Air Soil Pollut., 148 (2003) 111–25.
- O. Abollini, M. Aceto, M. Malandrino, C. Sarzanini, E. Mentasti,
Adsorption of heavy metals on Na-montmorillonite: effect of
pH and organic substances, Water Res., 37 (2003) 1619–27.
- S. Karabulut, A. Karabakan, A. Denizli, Y. Yürüm, Batch
removal of copper(II) and zinc(II) from aqueous solutions with
low rank Turkish coals, Sep. Purif. Tech., 18 (2000) 177–184.