References
- L. Addams, G. Boccaletti, M. Kerlin, M. Stuchtey, W.R. Group,
McKinsey and Company Charting Our Water Future: Economic
Frameworks to Inform Decision-making, 2030 Water
Resources Group, 2009.
- M. Elimelech, W.A. Phillip, The future of seawater desalination:
energy, technology, and the environment, Science, 333 (2011)
712–717.
- K. Spiegler, Y. El-Sayed, The energetics of desalination processes,
Desalination, 134 (2001) 109–128.
- X. Lu, X. Bian, L. Shi, Preparation and characterization of NF
composite membrane, J. Membr. Sci., 210 (2002) 3–11.
- J. Schaep, B. Van der Bruggen, S. Uytterhoeven, R. Croux,
C. Vandecasteele, D. Wilms, E. Van Houtte, F. Vanlerberghe,
Removal of hardness from groundwater by nanofiltration,
Desalination, 119 (1998) 295–302.
- H.D.M. Sombekke, D.K. Voorhoeve, P. Hiemstra, Environmental
impact assessment of groundwater treatment with nanofiltration,
Desalination, 113 (1997) 293–296.
- M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization
as an electrochemical means of saving energy and delivering
clean water. Comparison to present desalination practices:
will it compete? Electrochim. Acta., 55 (2010) 3845–3856.
- A.M. Johnson, A.W. Venolia, R.G. Wilbourne, J. Newman, C.M.
Wong, W.S. Gilliam, The electrosorb process for desalting
water, Washington: U.S. Dept. of the Interior 1970.
- Y. Oren, A. Soffer, Electrochemical parametric pumping, J.
Electrochem. Soc., 125 (1978) 869–875.
- D.D. Caudle, J.H. Tucker, J.L. Cooper, B.B. Arnold, A.
Papastamataki, Electrochemical demineralization of water
with carbon electrodes, Washington: U.S. Dept. of the Interior
1966.
- S. Panwichian, D. Kantachote, B. Wittayaweerasak, Isolation
of purple nonsulfur bacteria for the removal of heavy metals
and sodium from contaminated shrimp ponds, Electron. J. Biotech.,
13 (2010) 3–4.
- H.W. Yen, I.C. Hu, C.Y. Chen, S.H. Ho, D.J. Lee, J.S. Chang,
Microalgae-based biorefinery–from biofuels to natural products,
Biores. Technol., 135 (2013) 166–174.
- K. Minas, E. Karunakaran, T. Bond, C. Gandy, A. Honsbein, M.
Madsen, J. Amezagad, A. Amtmanne, M.R. Templetonc, C.A.
Biggs, L. Lawton, Biodesalination: an emerging technology for
targeted removal of Na+ and Cl− from seawater by cyanobacteria,
Desal. Water Treat., 55 (2015) 2647–2668.
- B. Kokabian, V.G. Gude, Photosynthetic microbial desalination
cells (PMDCs) for clean energy, water and biomass production,
Environ. Sci.: Processes Impacts, 15 (2013) 2178–2185.
- Z.L. Yao, C.Q. Ying, J.X. Lu, Q.F. Lai, K. Zhou, H. Wang, L.
Chen, Removal of K+, Na+, Ca2+, and Mg2+ from saline-alkaline
water using the microalga Scenedesmus obliquus, Chin. J. Oceanol.
Limnol., 31 (2013) 1248–1256.
- X. Gan, G. Shen, B. Xin, M. Li. Simultaneous biological desalination
and lipid production by Scenedesmus obliquus cultured
with brackish water, Desalination, 400 (2016) 1–6.
- S. Ruangsomboon, M. Ganmanee, S. Choochote, Effects of
different nitrogen, phosphorus, and iron concentrations and
salinity on lipid production in newly isolated strain of the
tropical green microalga, J. Appl. Phycol., 25 (2013) 867–874.
- I. Pancha, K. Chokshi, R. Maurya, K. Trivedi, S.K. Patidar, A.
Ghosh, S. Mishra, Salinity induced oxidative stress enhanced
biofuel production potential of microalgae Scenedesmus sp.
CCNM 1077, Biores. Technol., 189 (2015) 341–348.
- C. Yeesang, B. Cheirsilp, Effect of nitrogen, salt, and iron content
in the growth medium and light intensity on lipid production
by microalgae isolated from freshwater sources in
Thailand, Biores. Technol., 102 (2011) 3034–3040.
- L. Xin, H. Hong-ying, G. Ke, Effects of different nitrogen and
phosphorus concentrations on the growth, nutrient uptake,
and lipid accumulation of a freshwater microalga Scenedesmus
sp, Biores. Technol., 101 (2010) 5494–5500.
- S. Mandal, N. Mallick, Microalga Scenedesmus obliquus as a
potential source for biodiesel production, Appl. Microbiol.
Biot., 84 (2009) 281–291.
- N.L.S. Hakalin, A.P. Paz, D.A.G Aranda, Enhancement of cell
growth and lipid content of a freshwater microalga Scenedesmus sp. by optimizing nitrogen, phosphorus and vitamin
concentrations for biodiesel production, Natural Sci., 6 (2014)
1044–1054.
- R. Rippka, J. Deruelles, J.B. Waterbury, M. Herdman, R.Y. Stanier,
Generic assignments, strain histories and properties of
pure cultures of cyanobacteria, Microbiology, 111 (1979) 1–61.
- J. Ebina, T. Tsutsui, T. Shirai, Simultaneous determination of
total nitrogen and total phosphorus in water using peroxodisulfate
oxidation, Water Res., 17 (1983) 1721–1726.
- E.G. Bligh, W.J. Dyer, A rapid method of total lipid extraction
and purification, Can. J. Biochem. Physiol., 37 (1959) 911–917.
- J. Rodríguez-Ruiz, E.H. Belarbi, J.L.G. Sánchez, Rapid simultaneous
lipid extraction and transesterification for fatty acid
analyses, Biotechnol. Tech., 12 (1998) 689–691.
- G. Mujtaba, W. Choi, C.G. Lee, K. Lee, Lipid production by
Chlorella vulgaris after a shift from nutrient-rich to nitrogen
starvation conditions, Biores. Technol., 123 (2012) 279–283.
- Q. Lin, J. Lin, Effects of nitrogen source and concentration on
biomass and oil production of a Scenedesmus rubescens like
microalga, Biores. Technol., 102 (2011) 1615–1621.
- M. Li, L. Gao, L. Lin, Specific growth rate, colonial morphology
and extracellular polysaccharides (EPS) content of Scenedesmus
obliquus grown under different levels of light limitation, Ann.
Limnol. - Int. J. Lim., 51 (2015) 329–334.
- S. Pradhan, S. Singh, L.C. Rai, Characterization of various
functional groups present in the capsule of microcystis and
study of their role in biosorption of Fe, Ni and Cr, Biores. Technol.,
98 (2007) 595–601.
- V.K. Gupta, A. Rastogi, Biosorption of lead (II) from aqueous
solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—a comparative study, Colloids Surf. B: Biointerfaces, 64
(2008) 170–178.
- Q. Hu, M. Sommerfeld, E. Jarvis, Microalgal triacylglycerols as
feedstocks for biofuel production: perspectives and advances,
Plant J., 54 (2008) 621–639.
- N.O. Zhila, G.S. Kalacheva, T.G. Volova, Effect of salinity on
the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252, J. Appl. Phycol., 23 (2011) 47–52.
- E.S. Salama, H.C. Kim, R.A. Abou-Shanab, M.K. Ji, Y.K. Oh, S.H.
Kim, B.H. Jeon, Biomass, lipid content, and fatty acid composition
of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress, Bioprocess Biosyst. Eng., 36
(2013) 827–833.
- M. Siaut, S. Cuiné, C. Cagnon, Oil accumulation in the model
green alga Chlamydomonas reinhardtii: characterization, variability
between common laboratory strains and relationship
with starch reserves, BMC Biotechnol., 11 (2011) 7.
- M. EI-Sheekh, A.E.F. Abomohra, D. Hanelt, Optimization of
biomass and fatty acid productivity of Scenedesmus obliquus as a promising microalga for biodiesel production, World J.
Microbiol. Biotechnol., 29 (2013) 915–922.
- L. Pirastru, F. Perreault, F.L. Chu, A. Ockarroum, L. Sleno, R.
Popovic, D. Dewez, Longterm stress induced by nitrate deficiency,
sodium chloride, and high light on photosystem II
activity and carotenogenesis of green alga Scenedesmus sp, Botany,
90 (2012) 1007–1014.
- S.H. Ho, C.Y. Chen, J.S. Chang, Effect of light intensity and
nitrogen starvation on CO2 fixation and lipid/carbohydrate
production of an indigenous microalga Scenedesmus obliquus CNW-N, Biores. Technol., 113 (2012) 244–252.
- G. Ahlgren, P. Hyenstrand, Nitrogen limitation effects of different
nitrogen sources on nutritional quality of two freshwater
organisms, Scenedesmus quadricauda (Chlorophyceae) and
Synechococcus sp. (Cyanophyceae), J. Phycol., 39 (2003) 906–917.
- A. Banerjee, R. Sharma, Y. Chisti, Botryococcus braunii: a
renewable source of hydrocarbons and other chemicals, Crit.
Rev. Biotechnol., 22 (2002) 245–279.
- C. Dayananda, R. Sarada, V. Kumar, Isolation and characterization
of hydrocarbon producing green alga Botryococcus
braunii from Indian freshwater bodies, Electron. J. Biotechn.,
10 (2007) 78–91.
- A. Converti, A.A. Casazza, E.Y. Ortiz, P. Perego, M. Del Borghi,
Effect of temperature and nitrogen concentration on the
growthand lipid content of Nannochloropsis oculata and Chlorella
vulgaris for biodiesel production, Chem. Eng. Process., 48
(2009) 1146–1151.
- G. Knothe, “Designer” biodiesel: optimizing fatty estercomposition
to improve fuel properties, Energy Fuel, 22 (2008)
1358–1364.
- E. Francisco, D. Neves, E. Lopes, T. Franco, Microalgae as feedstock
for biodiesel production: carbon dioxide sequestration,
lipid production and biofuel quality, J. Chem. Technol. Biotechnol.,
85 (2009) 395–403.
- G. Knothe, Dependence of biodiesel fuel properties on the
structure of fatty acid alkyl esters, Fuel Process. Technol., 86
(2005) 1059–1070.
- S.H. Ho, W.M. Chen, J.S. Chang, Scenedesmus obliquus CNW-N
as a potential candidate for CO2 mitigation and biodiesel production,
Biores. Technol., 101 (2010) 8725–8730.
- M.Y. Roleda, S.P. Slocombe, R.J.G. Leakey, Effects of temperature
and nutrient regimes on biomass and lipid production
by six oleaginous microalgae in batch culture employing a
two-phase cultivation strategy, Biores. Technol., 129 (2013)
439–449.