References

  1. R.W. Dudley, G.A. Hodgkins, A. Mann, J. Chisolm, Evaluation of the effects of development on peak flow hydrographs for Collyer Brook, Maine, (2001) No. 2001–4156. Geological Survey (US).
  2. L. Fanghong, G. Aifang, L. Duo, utilization efficiency and potential analysis of urban storm flood resources, Energy Procedia, 16 (2012) 1283–1287.
  3. N. Sillanpää, H. Koivusalo, Impacts of urban development on runoff event characteristics and unit hydrographs across warm and cold seasons in high latitudes, J. Hydrol., 521 (2015) 328–340.
  4. W.D. Shuster, J. Bonta, H. Thurston, E. Warnemuende, D.R. Smith, Impacts of impervious surface on watershed hydrology: a review, Urban Water J., 2 (2005) 263–275.
  5. S.E. Brun, L.E. Band, Simulating runoff behavior in an urbanizing watershed, Comput. Environ. Urban Syst., 24 (2000) 5–22.
  6. H. Jia, H. Yao, T. Tang, L.Y. Shaw, J.X. Zhen, Y. Lu, Development of a multi-criteria index ranking system for urban runoff best management practices (BMPs) selection, Environ. Monit. Assess., 185 (2013) 7915–7933.
  7. S. Oraei Zare, B. Saghafian, A. Shamsai, Multi-objective optimization for combined quality–quantity urban runoff control, Hydrol. Earth Syst. Sci., 16 (2012) 4531–4542.
  8. S.C. Lee, I.H. Park, J.I. Lee, H.M. Kim, S.R. Ha, Application of SWMM for evaluating NPS reduction performance of BMPs, Desal. Wat. Treat., 19 (2010) 173–183.
  9. H. Jia, H. Ma, Z. Sun, S. Yu, Y. Ding, Y. Liang, A closed urban scenic river system using stormwater treated with LID-BMP technology in a revitalized historical district in China. Ecol. Eng., 71 (2014) 448–457.
  10. H. Jia, H. Yao, L.Y. Shaw, Advances in LID BMPs research and practice for urban runoff control in China, Front. Environ. Sci. Eng., 7 (2013) 709–720.
  11. C. Damodaram, E.M. Zechman, Simulation-optimization approach to design low impact development for managing peak flow alterations in urbanizing watersheds, J. Water Resour. Plann. Manage., 139 (2012) 290–298.
  12. L. Yao, L. Chen, W. Wei, R. Sun, Potential reduction in urban runoff by green spaces in Beijing: A scenario analysis, Urban For. Urban Greening, 14 (2015) 300–308.
  13. M.P. Abi Aad, M.T. Suidan, W.D. Shuster, Modeling techniques of best management practices: rain barrels and rain gardens using EPA SWMM-5, J. Hydrol. Eng., 15 (2009) 434–443.
  14. A. Behroozi, M.H. Niksokhan, M. Nazariha, Developing a simulation optimisation model for quantitative and qualitative control of urban runoff using best management practices, J. Flood Risk Manage., (2015).
  15. H. Jia, Y. Lu, L.Y. Shaw, Y. Chen, Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village, Sep. Purif. Technol., 84 (2012) 112–119.
  16. L.M. Ahiablame, B.A. Engel, I. Chaubey, Effectiveness of low impact development practices in two urbanized watersheds: Retrofitting with rain barrel/cistern and porous pavement, J. Environ. Manage., 119 (2013) 151–161.
  17. L.A. Rossman, Storm Water Management Model Version 5.0, User’s Manual, EPA/600/R-05/040, U.S. EPA, Cincinnati, OH, 2007.
  18. K. Lee, H. Kim, G. Pak, S. Jang, L. Kim, C. Yoo, Z. Yun, J. Yoon, Cost-effectiveness analysis of stormwater best management practices (BMPs) in urban watersheds, Desal. Wat. Treat., 19 (2010) 92–96.
  19. M.H. Rashidi Mehrabadi, B. Saghafian, M.R. Bazargan-Lari, Simulation and feasibility of biological and structural BMPs for stormwater control in the urbanizing watersheds, Model. Earth Syst. Environ., 3 (2017) 719–731.
  20. B. Saghafian, M. Khosroshahi, Unit response approach for priority determination of flood source areas, J. Hydrol. Eng., 10 (2005) 270–277.
  21. Mahab Ghodss, Tehran Stormwater Management Master Plan, Vol. 2: Basic Studies, Part 3: Urban Flood Hydrology and Sediment Load, 2011, 5586760-5130-17746, (In Persian).
  22. E.L. Villarreal, A. Semadeni-Davies, L. Bengtsson, Inner city stormwater control using a combination of best management practices, Ecol. Eng., 22 (2004) 279–298.
  23. U.A. Gomes, L. Heller, J.L. Pena, A national program for large scale rainwater harvesting: An individual or public responsibility?, Water Resour. Manage., 26 (2012) 2703–2714.
  24. J.Y. Lee, J.S. Yang, M. Han, J. Choi, Comparison of the microbiological and chemical characterization of harvested rainwater and reservoir water as alternative water resources, Sci. Total Environ., 408 (2010) 896–905.
  25. M. Sturm, M. Zimmermann, K. Schütz, W. Urban, H. Hartung, Rainwater harvesting as an alternative water resource in rural sites in central northern Namibia, Phys. Chem. Earth. Parts A/B/C, 34 (2009) 776–785.
  26. M.M. Islam, F.F Chou, M.R. Kabir, C.H. Liaw, Rainwater: A potential alternative source for scarce safe drinking and arsenic contaminated water in Bangladesh, Water Resour. Manage., 24 (2010) 3987–4008.
  27. M.A. Imteaz, A. Ahsan, A. Shanableh, Reliability analysis of rainwater tanks using daily water balance model: Variations within a large city, Resour. Conserv. Recycl., 77 (2013) 37–43.
  28. A. Akter, S. Ahmed, Potentiality of rainwater harvesting for an urban community in Bangladesh, J. Hydrol., 528 (2015) 84–93.
  29. M.R. Karim, M.Z. Bashar, M.A. Imteaz, Reliability and economic analysis of urban rainwater harvesting in a megacity in Bangladesh, Resour. Conserv. Recycl., 104 (2015) 61–67.
  30. Y. Kim, T. Kim, H. Park, M. Han, Design method for determining rainwater tank retention volumes to control runoff from building rooftops, KSCE J. Civ. Eng., 19 (2015) 1585–1590.
  31. D.J. Sample, J. Liu, S. Wang, Evaluating the dual benefits of rainwater harvesting systems using reliability analysis, J. Hydrol. Eng., 18 (2012) 1310–1321.
  32. H. Kim, M. Han, J.Y. Lee, The application of an analytical probabilistic model for estimating the rainfall-runoff reductions achieved using a rainwater harvesting system, Sci. Total Environ., 424 (2012) 213–218.
  33. G. Petrucci, J.F. Deroubaix, B. De Gouvello, J.C. Deutsch, P. Bompard, B. Tassin, Rainwater harvesting to control stormwater runoff in suburban areas. An experimental casestudy, Urban Water J., 9 (2012) 45–55.
  34. M. Basinger, F. Montalto, U. Lall, A rainwater harvesting system reliability model based on nonparametric stochastic rainfall generator, J. Hydrol., 392 (2010) 105–118.
  35. X. Zhang, M. Hu, G. Chen, Y. Xu, Urban rainwater utilization and its role in mitigating urban waterlogging problems - A case study in Nanjing, China, Water Resour. Manage., 26 (2012) 3757–3766.
  36. F. Feki, N. Weissenbacher, E. Assefa, E. Olto, M. K. Gebremariam, T. Dalecha, B. Shibru, S. Sayadi, G. Langergraber. Rain water harvesting as additional water supply for multi-storey buildings in Arba Minch, Ethiopia, Desal. Wat. Treat., 53 (2015) 1060–1067.
  37. M.H. Rashidi Mehrabadi, B. Saghafian, F. Haghighi Fashi, Assessment of residential rainwater harvesting efficiency for meeting non-potable water demands in three climate conditions, Resour. Conserv. Recycl., 73 (2013) 86–93.
  38. M.A. Imteaz, A. Shanableh, A. Rahman, A. Ahsan, Optimisation of rainwater tank design from large roofs: A case study in Melbourne, Australia, Resources, Resour. Conserv. Recycl., 55 (2011) 1022–1029.
  39. G. Becciu, A. Raimondi, C. Dresti, Semi-probabilistic design of rainwater tanks: a case study in Northern Italy, Urban Water J., (2016) 1–8.
  40. K.A. Collins, W.F. Hunt, J.M. Hathaway, Hydrologic comparison of four types of permeable pavement and standard asphalt in eastern North Carolina, J. Hydrol. Eng., 13 (2008) 1146–1157.
  41. E.A. Dreelin, L. Fowler, C.R. Carroll, A test of porous pavement effectiveness on clay soils during natural storm events, Water Res., 40 (2006) 799–805.
  42. E.Z. Bean, W.F. Hunt, D.A. Bidelspach, Field survey of permeable pavement surface infiltration rates, J. Irrig. Drain. Eng., 133 (2007) 249–255.
  43. B.T. Rushton, Low-impact parking lot design reduces runoff and pollutant loads, J. Water Resour. Plann. Manage., 127 (2001) 172–179.
  44. B.O. Brattebo, D.B. Booth, Long-term stormwater quantity and quality performance of permeable pavement systems, Water Res., 37 (2003) 4369–4376.
  45. H.M. Imran, S. Akib, M.R Karim, Permeable pavement and stormwater management systems: a review, Environ. Technol., 34 (2013) 2649–2656.
  46. K. Kumar, J. Kozak, L. Hundal, A. Cox, H. Zhang, T. Granato, In-situ infiltration performance of different permeable pavements in a employee used parking lot—A four-year study, J. Environ. Manage., 167 (2016) 8–14.
  47. J.K Holman-Dodds, A.A. Bradley, K.W. Potter, Evaluation of hydrologic benefits of infiltration based urban storm water management, 1 (2003) 205–215.
  48. P.S. Mikkelsen, P. Jacobson, S. Fujita, Infiltration practice for control of urban storm water, J. Hydraul. Res., 34 (1996) 827– 840.
  49. L. Locatelli, O. Mark, P.S. Mikkelsen, K. Arnbjerg-Nielsen, T. Wong, P.J. Binning, Determining the extent of groundwater interference on the performance of infiltration trenches, J. Hydrol., 529 (2015) 1360–1372.
  50. A.P. Davis, R.G. Traver, W.F. Hunt, R. Lee, R.A. Brown, J.M. Olszewski, Hydrologic performance of bioretention stormwater control measures, J. Hydrol. Eng., 17 (2011) 604–614.
  51. M.B. James, R.L. Dymond, Bioretention hydrologic performance in an urban stormwater network, J. Hydrol. Eng., 17 (2011) 431–436.
  52. R.J. Winston, J.D. Dorsey, W.F. Hunt, Quantifying volume reduction and peak flow mitigation for three bioretention cells in clay soils in northeast Ohio, Sci. Total Environ., 553 (2016) 83–95.
  53. T. Lucke, P.WB Nichols, The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation, Sci. Total Environ., 536 (2015) 784–792.
  54. J.Y. Lee, H. Kim, M. Han, The Evaluation of Bioretention Mesocosm for Treatment of Urban Stromwater Runoff, Int. J. Urban Sci., 12 (2008) 116–128.
  55. F.K.F. Geronimo, M.C. Maniquiz-Redillas, L.H. Kim, Fate and removal of nutrients in bioretention systems, Desal. Wat. Treat., 53 (2015) 3072–3079.
  56. J. Li, Y. Li, Y. Li, SWMM-based evaluation of the effect of rain gardens on urbanized areas, Environ. Earth Sci., 75 (2016) 1–14.
  57. K.L. Katsifarakis, M. Vafeiadis, N. Theodossiou, Sustainable Drainage and Urban Landscape Upgrading Using Rain Gardens. Site Selection in Thessaloniki, Greece, Agric. Agric. Sci. Procedia., 4 (2015) 338–347.
  58. L. Autixier, A. Mailhot, S. Bolduc, A.S. Madoux-Humery, M. Galarneau, M. Prévost, S. Dorner, Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water, Sci. Total Environ., 499 (2014) 238–247.
  59. A.A. Jennings, M.A. Berger, J.D. Hale, Hydraulic and hydrologic performance of residential rain gardens, J. Environ. Eng., 141 (2015) 04015033.
  60. H. Yang, W.A. Dick, E.L. McCoy, P.L. Phelan, P.S. Grewal, Field evaluation of a new biphasic rain garden for stormwater flow management and pollutant removal, Ecol. Eng., 54 (2013) 22–31.
  61. B. Palanisamy, T.F.M. Chui, Rehabilitation of concrete canals in urban catchments using low impact development techniques, J. Hydrol., 523 (2015) 309–319.
  62. B.T. Rushton, Low-impact parking lot design reduces runoff and pollutant loads, J. Water Resour. Plann. Manage., 127 (2001) 172–179.
  63. S.L. Yu, J.T. Kuo, E.A. Fassman, H. Pan, Field test of grassedswale performance in removing runoff pollution, J. Water Resour. Plann. Manage., 127 (2001) 168–171.