References

  1. A.D. Augst, H.J. Kong, D.J. Mooney, Alginate hydrogels as biomaterials, Macromol. Biosci., 6 (2006) 623–633.
  2. K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications, Prog. Polym. Sci., 37(1) (2012) 106–126.
  3. P. Li, Y-N. Dai, J-P. Zhang, A.-Q. Wang, Q. Wei, Chitosan–alginate nanoparticles as a novel drug delivery system for nifedipine, Int. J. Biomed. Sci., 4(3) (2008) 221–228.
  4. R. Lago, J.R. Rodrigues, Kinetic analysis of metal uptake by dry and gel alginate particles, Biochem. Eng. J., 46 (2009) 320– 326.
  5. L.K. Jang, S.L. Lopez, S.L. Eastman, P. Pryfogle, Recovery of copper and cobalt by biopolymer gels, Biotechnol. Bioeng., 37 (1991) 266–273.
  6. A.K. Pandey, S.D. Pandey, V. Misra, Removal of toxic metals from leachates from hazardous solid wastes and reduction of toxicity to Microtox by the use of calcium alginate beads containing humic acid, Ecotoxicol. Environ. Saf., 52 (2002) 92–96.
  7. A.K. Pandey, S.D. Pandey, V. Misra, A.K. Srimal, Removal of chromium and reduction of toxicity to Microtox system from tannery effluent by the use of calcium alginate beads containing humic acid, Chemosphere, 51 (2003) 329–333.
  8. R.M.P. Silva, J.P.H. Manso, J.R.C. Rodrigues, R.J.L. Lagoa, A comparative study of alginate beads and an ion-exchange resin for the removal of heavy metals from a metal plating effluent, J. Environ. Sci. Health A, 43 (2008) 1311–1317.
  9. T.J. SudhaVania, N. Sivagangi Reddy, P. Ramasubba Reddy, K.S.V. Krishna Rao, J. Ramkumar, A.V.R. Reddy, Synthesis, characterization, and metal uptake capacity of a new polyaniline and poly(acrylic acid) grafted sodium alginate/gelatin adsorbent, Desal. Water Treat., 52 (2014) 526–535.
  10. B. An, H. Lee, S. Lee, SH. Lee, J.W. Choi, Determining the selectivity of divalent metal cations for the carboxyl group of alginate hydrogel beads during competitive sorption, J. Hazard. Mater., 298 (2015) 11–18.
  11. M.M. EL-Tayieb, M.M. El- Shafei, M.S. Mahmoud, The role of alginate as polymeric material in treatment of tannery wastewater, IJAST, 2(2) (2013) 219–224.
  12. J. Maitr, V.K. Shukl, Cross-linking in hydrogels - a review, Amer. J. Polym. Sci., 4(2) (2014) 25–31.
  13. A.C. Jen, M.C. Wake, A.G. Mikos, Review: hydrogels for cell immobilization, Biotechnol. Bioeng., 50 (1996) 357–364.
  14. H. Zhang, F. Zhang, J. Wu, Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique, React. Funct. Polym., 73(7) (2013) 923–928.
  15. E.A. Kamoun, E.S. Kenawy, T.M. Tamer, M.A. El-Meligy, M.S. MohyEldin, Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: Characterization and bio-evaluation, Arabian J. Chem., 8(1) (2015) 38–47.
  16. Y-H. Lin, H-F. Liang, C-K. Chung, M-C. Chen, H-W. Sung, Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs, Biomaterials, 26 (2005) 2105–2113.
  17. R. Popeski-Dimovski, S. Rendevski, N. Mahmudi, Change in gellation time of sodium alginate biopolymer hydrogels with change of dose of gamma irradiation, Physica Macedonica, 45 (2012) 67–72.
  18. A.K. Higham, C.A Bonino, R.S. Raghavan, S.A. Khan, Photo- activated ionic gelation of alginate hydrogel: real-time rheological monitoring of the two-step crosslinking mechanism, Soft Matter., 10 (2014) 4990–5002.
  19. J.O. Kim, J.K. Park, J.H. Kim, S.G. Jin, C.S. Yonga, D.X. Li, J.Y. Choi, J.S. Woo, B.K. Yoo, W.S. Lyoo, J-A. Kim, H.G. Choi, Development of polyvinyl alcohol–sodium alginate gel-matrixbased wound dressing system containing nitrofurazone, Int. J. Pharm., 359 (2008) 79–86.
  20. J.D. Roach, M.M. Bondaruk, A. Al-Abdulghani, Z. Shahrori, Counterion binding in aqueous solutions of poly(vinylpyridines) as assessed by potentiometric titration, Adv. Mater. Phys. Chem., 6 (2016) 249–261.
  21. H. El-Hamshary, M. El-Garawany, F.N. Assubaie, M. Al-Eed, Synthesis of poly(acrylamide-co-4-vinylpyridine) hydrogels and their application in heavy metal removal, J. Appl. Polym. Sci., 89 (2003) 2522–2526.
  22. M.W. Sabaa, N.A. Mohamed, R.R. Mohamed, S.M. Abd El Latif, Chemically induced graft copolymerization of 4-vinylpyridine onto carboxymethyl chitosan, Polym. Bull., 67 (2011) 693–707.
  23. H. BodugoÈz, N. Pekel, O. GuÈven, Preparation of poly(vinyl alcohol) hydrogels with radiation grafted citric and succinic acid groups, Radiat. Phys. Chem., 55 (1999) 667–671.
  24. G. Skjåk-Bræk, H. Grasdalen, O. Smidsrød, In homogeneous polysaccharide ionic gels, Carbohydr. Polym., 10 (1989) 31–54.
  25. T. Tripathy, R.P. Singh, Characterization of polyacrylamide- grafted sodium alginate: a novel polymeric flocculant, J. Appl. Polym. Sci., 81 (2001) 3296–3308.
  26. S.N. Pawar, K.J. Edgar, Alginate derivatization: A review of chemistry, properties and applications, Biomaterials, 33 (2012) 3279–3305.
  27. P. Ilgin, H. Durak, A. Gür, A novel pH-responsive p(AAmco- METAC)/MMT composite hydrogel: synthesis, characterization and its absorption performance on heavy metal ions, Polym. Plast. Technol. Eng., 54 (2015) 603–615.
  28. J-Y. Sun, X. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, Z. Suo, Highly stretchable and tough hydrogels, Nature, 489 (2012) 133–136. Supplementary Information (doi:10.1038/nature11409).
  29. C.X. Liang, K. Hirabayashi, Improvements of the physical properties of fibroin membranes with sodium alginate, J. Appl. Polym. Sci., 45 (1992) 1937–1943.
  30. F.O. Abreu, C. Bianchini, T. BL Kist, M.M.C. Forte, Preparation and properties of core–shell alginate–carboxymethylchitosan hydrogels, Polym. Int., 58 (2009) 1267–1274.
  31. Y. Chen, W. Zhao, J. Zhang, Preparation of 4-vinylpyridine (4VP) resin and its adsorption performance for heavy metal ions, RSC Adv., 7 (2017) 4226–4236.
  32. N. Türkel, M.S. Aksoy, Complex formation of nickel(II) and copper(II) with barbituric acid, ISRN Anal. Chem., (Article ID 243175) 2014 (2014) 1–5.