References
- O. Belyaeva, N.S. Golubeva, T.A. Krasnova, A.E. Yokusheva,
Developing a technology for the regeneration of active coal
after pyridine adsorption from wastewater, Chem. Sustain.
Dev., 17 (2009) 243–247.
- M. Sheintuchm, Y.I. Matatov-Meytal, Comparison of catalytic
processes with other regeneration methods of activated carbon,
Catal. Today, 53 (1999) 73–80.
- A. Bagreev, H. Rahman, T.J. Bandosz, Thermal regeneration of
a spent activated carbon previously used as hydrogen sulfide
adsorbent, Carbon, 39 (2001) 1319–1326.
- R.J. Martin, W.J.N.G., Chemical regeneration of exhausted activated
carbon-I, Water Res., 18(1) (1984) 59–73.
- M. Kerzhenstev, C. Guillard, J.M. Herrmann, P. Pichat, Photocatalytic
pollutant removal in water at room temperature: case
study of the total degradation of the insecticide fenitrothion
(phosphorothioic acid O, O-dimethyl-O-(3-methyl-4-nitrophenyl)
ester), Catal. Today, 27 (1996) 215–220.
- R.M. Narbaitz, J. McEwen, Electrochemical regeneration of
field spent GAC from two water treatment plants, Water Res.,
46(15) (2012) 4852–4860.
- M. Breitbach, D. Bathen, Influence of ultrasound on adsorption
processes, Ultrasonics Sonochem., 8(3) (2001) 277–283.
- G.-Z. Qu, N. Lu, J. Li, Y. Wu, G.-F. Li, D. Li, Simultaneous pentachlorophenol
decomposition and granular activated carbon
regeneration assisted by dielectric barrier discharge plasma, J.
Hazard. Mater., 172 (2009) 472–478.
- G. San Miguel, S. Lambert, N. Graham, Thermal regeneration
of granular activated carbons using inert atmospheric conditions,
Environ. Technol., 23(12) (2002) 1337–1346.
- D. Chinn, C.J. King, Adsorption of glycols, sugars, and related
multiple-OH compounds onto activated carbons. 2. Solvent
regeneration, Ind. Eng. Chem. Res., 38(10) (1999) 3746–3753.
- M.O. Omorogie, J.O. Babalola, E.I. Unuabonah, Regeneration
strategies for spent solid matrices used in adsorption of
organic pollutants from surface water: a critical review, Desal.
Water Treat., 57(2) (2016) 518–544.
- K. Rajeshwar, J.G. Ibanez, Environmental electrochemistry:
Fundamentals and applications in pollution sensors and
abatement, Academic Press, 2017.
- L. Wang, N. Balasubramanian, Electrochemical regeneration
of granular activated carbon saturated with organic compounds,
Chem. Eng. J., 155(3) (2009) 763–768.
- M. García-Otón, F. Montilla, M.A. Lillo-Rodenas, E. Morallo,
J.L. Vazquez, Electrochemical regeneration of activated carbon
saturated with toluene, J. Appl. Electrochem., 35 (2005) 319–325.
- R.M. Narbaitz, J. Cen, Electrochemical regeneration of granular
activated carbon, Water Res., 28(8) (1994) 1771–1778.
- H. Zhang, Regeneration of exhausted activated carbon by electrochemical
method, Chem. Eng. J., 85(1) (2002) 81–85.
- M. Zhou, L. Lei, Electrochemical regeneration of activated carbon
loaded with p-nitrophenol in a fluidized electrochemical
reactor, Electrochim. Acta, 51 (2006) 4489–4496.
- P. Canizares, F. Martinez, M. Diaz, J. Garcia-Gomez, M.A.
Rodrigo, Electrochemical oxidation of aqueous phenol wastes
using active and nonactive electrodes, J. Electrochem. Soc.,
149(8) (2002) D118‑D124.
- M. Gattrell, D.W. Kirk, The electrochemical oxidation of aqueous
phenol at a glassy carbon electrode, Can. J. Chem. Eng.,
68(6) (1990) 997–1003.
- D.P. Manica, Y. Mitsumori, A.G. Ewing, Characterization of
electrode fouling and surface regeneration for a platinum electrode
on an electrophoresis microchip, Anal. Chem., 75(17)
(2003) 4572–4577.
- M. Zhou, Z. Wu, X. Ma, Y. Cong, Q. Ye, D. Wang, A novel fluidized
electrochemical reactor for organic pollutant abatement,
Sep. Purif. Technol., 34(1) (2004) 81–88.
- S.S. Moghaddam, M.A. Moghaddam, M. Arami, Coagulation/
flocculation process for dye removal using sludge from water
treatment plant: optimization through response surface methodology,
J. Hazard. Mater., 175(1) (2010) 651–657.
- S. Sachdeva, A. Kumar, Preparation of nanoporous composite
carbon membrane for separation of rhodamine B dye, J.
Membr. Sci., 329 (2009) 2–10.
- M. Mohammadi, A.J. Hassani, A.R. Mohamed, G.D. Najafpour,
Removal of rhodamine B from aqueous solution using palm
shell-based activated carbon: adsorption and kinetic studies, J.
Chem. Eng. Data, 55(12) (2010) 5777–5785.
- K.P. Singh, S. Gutpa, A.K. Singh, S. Sinha, Experimental
design and response surface modeling for optimization of
Rhodamine B removal from water by magnetic nanocomposite,
Chem. Eng. J., 165 (2010) 151–160.
- M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira,
Response surface methodology (RSM) as a tool for optimization
in analytical chemistry, Talanta, 76(5) (2008) 965–977.
- B.K. Körbahti, A. Tanyolaç, Electrochemical treatment of simulated
textile wastewater with industrial components and
Levafix Blue CA reactive dye: Optimization through response
surface methodology, J. Hazard. Mater., 151(2) (2008) 422–431.
- F.N. Chianeh, J.B. Parsa, Electrochemical degradation of metronidazole
from aqueous solutions using stainless steel anode
coated with SnO2 nanoparticles: experimental design, J. Taiwan
Inst. Chem. Eng., 59 (2016) 424–432.
- J. Iniesta, J. Gonzalez-Garcia, E. Exposito, V. Montiel, A. Aldaz,
Influence of chloride ion on electrochemical degradation of
phenol in alkaline medium using bismuth doped and pure
PbO2 anodes, Water Res., 35(14) (2001) 3291–3300.
- R.M. Narbaitz, J. Cen, Alternative methods for determining
the percentage regeneration of activated carbon, Water Res., 31
(1997) 2532–2542.
- M. Zhou, Q. Dai, L. Lei, C.A. Ma, D. Wang, Long life modified
lead dioxideanode for organic wastewater treatment: electrochemical
characteristics and degradation mechanism, Environ.
Sci. Technol., 39(1) (2005) 363–370.