References

  1. O. Belyaeva, N.S. Golubeva, T.A. Krasnova, A.E. Yokusheva, Developing a technology for the regeneration of active coal after pyridine adsorption from wastewater, Chem. Sustain. Dev., 17 (2009) 243–247.
  2. M. Sheintuchm, Y.I. Matatov-Meytal, Comparison of catalytic processes with other regeneration methods of activated carbon, Catal. Today, 53 (1999) 73–80.
  3. A. Bagreev, H. Rahman, T.J. Bandosz, Thermal regeneration of a spent activated carbon previously used as hydrogen sulfide adsorbent, Carbon, 39 (2001) 1319–1326.
  4. R.J. Martin, W.J.N.G., Chemical regeneration of exhausted activated carbon-I, Water Res., 18(1) (1984) 59–73.
  5. M. Kerzhenstev, C. Guillard, J.M. Herrmann, P. Pichat, Photocatalytic pollutant removal in water at room temperature: case study of the total degradation of the insecticide fenitrothion (phosphorothioic acid O, O-dimethyl-O-(3-methyl-4-nitrophenyl) ester), Catal. Today, 27 (1996) 215–220.
  6. R.M. Narbaitz, J. McEwen, Electrochemical regeneration of field spent GAC from two water treatment plants, Water Res., 46(15) (2012) 4852–4860.
  7. M. Breitbach, D. Bathen, Influence of ultrasound on adsorption processes, Ultrasonics Sonochem., 8(3) (2001) 277–283.
  8. G.-Z. Qu, N. Lu, J. Li, Y. Wu, G.-F. Li, D. Li, Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by dielectric barrier discharge plasma, J. Hazard. Mater., 172 (2009) 472–478.
  9. G. San Miguel, S. Lambert, N. Graham, Thermal regeneration of granular activated carbons using inert atmospheric conditions, Environ. Technol., 23(12) (2002) 1337–1346.
  10. D. Chinn, C.J. King, Adsorption of glycols, sugars, and related multiple-OH compounds onto activated carbons. 2. Solvent regeneration, Ind. Eng. Chem. Res., 38(10) (1999) 3746–3753.
  11. M.O. Omorogie, J.O. Babalola, E.I. Unuabonah, Regeneration strategies for spent solid matrices used in adsorption of organic pollutants from surface water: a critical review, Desal. Water Treat., 57(2) (2016) 518–544.
  12. K. Rajeshwar, J.G. Ibanez, Environmental electrochemistry: Fundamentals and applications in pollution sensors and abatement, Academic Press, 2017.
  13. L. Wang, N. Balasubramanian, Electrochemical regeneration of granular activated carbon saturated with organic compounds, Chem. Eng. J., 155(3) (2009) 763–768.
  14. M. García-Otón, F. Montilla, M.A. Lillo-Rodenas, E. Morallo, J.L. Vazquez, Electrochemical regeneration of activated carbon saturated with toluene, J. Appl. Electrochem., 35 (2005) 319–325.
  15. R.M. Narbaitz, J. Cen, Electrochemical regeneration of granular activated carbon, Water Res., 28(8) (1994) 1771–1778.
  16. H. Zhang, Regeneration of exhausted activated carbon by electrochemical method, Chem. Eng. J., 85(1) (2002) 81–85.
  17. M. Zhou, L. Lei, Electrochemical regeneration of activated carbon loaded with p-nitrophenol in a fluidized electrochemical reactor, Electrochim. Acta, 51 (2006) 4489–4496.
  18. P. Canizares, F. Martinez, M. Diaz, J. Garcia-Gomez, M.A. Rodrigo, Electrochemical oxidation of aqueous phenol wastes using active and nonactive electrodes, J. Electrochem. Soc., 149(8) (2002) D118‑D124.
  19. M. Gattrell, D.W. Kirk, The electrochemical oxidation of aqueous phenol at a glassy carbon electrode, Can. J. Chem. Eng., 68(6) (1990) 997–1003.
  20. D.P. Manica, Y. Mitsumori, A.G. Ewing, Characterization of electrode fouling and surface regeneration for a platinum electrode on an electrophoresis microchip, Anal. Chem., 75(17) (2003) 4572–4577.
  21. M. Zhou, Z. Wu, X. Ma, Y. Cong, Q. Ye, D. Wang, A novel fluidized electrochemical reactor for organic pollutant abatement, Sep. Purif. Technol., 34(1) (2004) 81–88.
  22. S.S. Moghaddam, M.A. Moghaddam, M. Arami, Coagulation/ flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology, J. Hazard. Mater., 175(1) (2010) 651–657.
  23. S. Sachdeva, A. Kumar, Preparation of nanoporous composite carbon membrane for separation of rhodamine B dye, J. Membr. Sci., 329 (2009) 2–10.
  24. M. Mohammadi, A.J. Hassani, A.R. Mohamed, G.D. Najafpour, Removal of rhodamine B from aqueous solution using palm shell-based activated carbon: adsorption and kinetic studies, J. Chem. Eng. Data, 55(12) (2010) 5777–5785.
  25. K.P. Singh, S. Gutpa, A.K. Singh, S. Sinha, Experimental design and response surface modeling for optimization of Rhodamine B removal from water by magnetic nanocomposite, Chem. Eng. J., 165 (2010) 151–160.
  26. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76(5) (2008) 965–977.
  27. B.K. Körbahti, A. Tanyolaç, Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye: Optimization through response surface methodology, J. Hazard. Mater., 151(2) (2008) 422–431.
  28. F.N. Chianeh, J.B. Parsa, Electrochemical degradation of metronidazole from aqueous solutions using stainless steel anode coated with SnO2 nanoparticles: experimental design, J. Taiwan Inst. Chem. Eng., 59 (2016) 424–432.
  29. J. Iniesta, J. Gonzalez-Garcia, E. Exposito, V. Montiel, A. Aldaz, Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO2 anodes, Water Res., 35(14) (2001) 3291–3300.
  30. R.M. Narbaitz, J. Cen, Alternative methods for determining the percentage regeneration of activated carbon, Water Res., 31 (1997) 2532–2542.
  31. M. Zhou, Q. Dai, L. Lei, C.A. Ma, D. Wang, Long life modified lead dioxideanode for organic wastewater treatment: electrochemical characteristics and degradation mechanism, Environ. Sci. Technol., 39(1) (2005) 363–370.