References
- D. Briggs, Environmental pollution and the global burden of
disease, British Med. Bull., 68 (2003) 1–24.
- Z. Cheng, F. Fu, D.D. Dionysiou, B. Tang, Adsorption, oxidation,
and reduction behavior of arsenic in the removal of aqueous
As (III) by mesoporous Fe/Al bimetallic particles, Water
Res., 96 (2016) 22–31.
- D.Q. Hung, O. Nekrassova, R.G. Compton, Analytical methods
for inorganic arsenic in water: a review, Talanta, 64 (2004)
269–277.
- V.K. Sharma, M. Sohn, Aquatic arsenic: toxicity, speciation,
transformations, and remediation, Environ. Int., 35 (2009) 743–
759.
- G. Liu, X. Zhang, J.W. Talley, C.R. Neal, H. Wang, Effect of
NOM on arsenic adsorption by TiO2 in simulated As (III)-contaminated
raw waters, Water Res., 42 (2008) 2309–2319.
- B. An, Q. Liang, D. Zhao, Removal of arsenic (V) from spent ion
exchange brine using a new class of starch-bridged magnetite
nanoparticles, Water Res., 45 (2011) 1961–1972.
- S. Tresintsi, K. Simeonidis, G. Vourlias, G. Stavropoulos, M.
Mitrakas, Kilogram-scale synthesis of iron oxy-hydroxides
with improved arsenic removal capacity: Study of Fe (II) oxidation–
precipitation parameters, Water Res., 46 (2012) 5255–
5267.
- M.B. Baskan, A. Pala, A statistical experiment design approach
for arsenic removal by coagulation process using aluminum
sulfate, Desalination, 254 (2010) 42–48.
- J. Pattanayak, K. Mondal, S. Mathew, S. Lalvani, A parametric
evaluation of the removal of As (V) and As (III) by carbon-
based adsorbents, Carbon, 38 (2000) 589–596.
- E. Lourie, E. Gjengedal, Metal sorption by peat and algae
treated peat: Kinetics and factors affecting the process, Chemosphere,
85 (2011) 759–764.
- J.U.K. Oubagaranadin, Z. Murthy, Isotherm modeling and
batch adsorber design for the adsorption of Cu (II) on a clay
containing montmorillonite, Appl. Clay Sci., 50 (2010) 409–413.
- J.P. Chen, S. Wu, Acid/base-treated activated carbons: characterization
of functional groups and metal adsorptive properties,
Langmuir, 20 (2004) 2233–2242.
- V. Gupta, A. Rastogi, V. Saini, N. Jain, Biosorption of copper (II)
from aqueous solutions by Spirogyra species, J. Colloid Interface
Sci., 296 (2006) 59–63.
- G.P. Rao, C. Lu, F. Su, Sorption of divalent metal ions from
aqueous solution by carbon nanotubes: a review, Separ. Purif.
Technol., 58 (2007) 224–231.
- M.A. Atieh, O.Y. Bakather, B. Al-Tawbini, A.A. Bukhari, F.A.
Abuilaiwi, M.B. Fettouhi, Effect of carboxylic functional group
functionalized on carbon nanotubes surface on the removal of
lead from water, Bioinorg. Chem. Applic., 2010 (2011).
- I. Ali, New generation adsorbents for water treatment, Chem.
Rev., 112 (2012) 5073–5091.
- A. Abbas, A.M. Al-Amer, T. Laoui, M.J. Al-Marri, M.S. Nasser,
M. Khraisheh, M.A. Atieh, Heavy metal removal from aqueous
solution by advanced carbon nanotubes: critical review
of adsorption applications, Separ. Purif. Technol., 157 (2016)
141–161.
- R.K. Ibrahim, M. Hayyan, M.A. AlSaadi, A. Hayyan, S. Ibrahim,
Environmental application of nanotechnology: air, soil,
and water, Environ. Sci. Pollut. Res., 23 (2016) 13754–13788.
- E.T. Thostenson, Z. Ren, T.-W. Chou, Advances in the science
and technology of carbon nanotubes and their composites: a
review, Comp. Sci. Technol., 61 (2001) 1899–1912.
- M. Martinez, M. Callejas, A. Benito, M. Cochet, T. Seeger, A.
Anson, J. Schreiber, C. Gordon, C. Marhic, O. Chauvet, Modifications
of single-wall carbon nanotubes upon oxidative purification
treatments, Nanotechnology, 14 (2003) 691.
- M. Hayyan, A. Abo-Hamad, M.A. AlSaadi, M.A. Hashim,
Functionalization of graphene using deep eutectic solvents,
Nanoscale Res. Lett., 10 (2015) 324.
- A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah,
Novel solvent properties of choline chloride/urea mixtures,
Chem. Commun., (2003) 70–71.
- A.P. Abbott, D. Boothby, G. Capper, D.L. Davies, R.K. Rasheed,
Deep eutectic solvents formed between choline chloride and
carboxylic acids: versatile alternatives to ionic liquids, J. Amer.
Chem. Soc., 126 (2004) 9142–9147.
- J.T. Gorke, F. Srienc, R.J. Kazlauskas, Hydrolase-catalyzed biotransformations
in deep eutectic solvents, Chem. Commun.,
(2008) 1235–1237.
- E. Leroy, P. Decaen, P. Jacquet, G. Coativy, B. Pontoire, A.-L.
Reguerre, D. Lourdin, Deep eutectic solvents as functional
additives for starch based plastics, Green Chem., 14 (2012)
3063–3066.
- E.R. Cooper, C.D. Andrews, P.S. Wheatley, P.B. Webb, P.
Wormald, R.E. Morris, Ionic liquids and eutectic mixtures as
solvent and template in synthesis of zeolite analogues, Nature,
430 (2004) 1012–1016.
- A.P. Abbott, J. Griffith, S. Nandhra, C. O’Connor, S. Postlethwaite,
K.S. Ryder, E.L. Smith, Sustained electroless deposition
of metallic silver from a choline chloride-based ionic
liquid, Surf. Coat. Technol., 202 (2008) 2033–2039.
- A.P. Abbott, G. Capper, K.J. McKenzie, K.S. Ryder, Electrodeposition
of zinc–tin alloys from deep eutectic solvents based
on choline chloride, J. Electroanal. Chem., 599 (2007) 288–294.
- A. Abo-Hamad, M. Hayyan, M.A. AlSaadi, M.A. Hashim,
Potential applications of deep eutectic solvents in nanotechnology,
Chem. Eng. J., 273 (2015) 551–567.
- A. Giri, R. Patel, S. Mahapatra, Artificial neural network (ANN)
approach for modelling of arsenic (III) biosorption from aqueous
solution by living cells of Bacillus cereus biomass, Chem.
Eng. J., 178 (2011) 15–25.
- K.H. Cho, S. Sthiannopkao, Y.A. Pachepsky, K.-W. Kim, J.H.
Kim, Prediction of contamination potential of groundwater
arsenic in Cambodia, Laos, and Thailand using artificial neural
network, Water Res., 45 (2011) 5535–5544.
- M. Podder, C. Majumder, The use of artificial neural network for
modelling of phycoremediation of toxic elements As (III) and As
(V) from wastewater using Botryococcus braunii, Spectrochim.
Acta Part A: Molec. Biomol. Spectrosc., 155 (2016) 130–145.
- M.K. AlOmar, M. Hayyan, M.A. Alsaadi, S. Akib, A. Hayyan,
M.A. Hashim, Glycerol-based deep eutectic solvents: Physical
properties, J. Mol. Liq., 215 (2016) 98–103.
- M.A. AlSaadi, A. Al Mamun, M.Z. Alam, M.K. Amosa, M.A.
Atieh, Removal of cadmium from water by CNT–PAC composite:
effect of functionalization, Nano, 11 (2016) 1650011.
- D.P. Strik, A.M. Domnanovich, L. Zani, R. Braun, P. Holubar,
Prediction of trace compounds in biogas from anaerobic digestion
using the MATLAB Neural Network Toolbox, Environ.
Model. Software, 20 (2005) 803–810.
- T.J. Aitchison, M. Ginic-Markovic, J.G. Matisons, G.P. Simon,
P.M. Fredericks, Purification, cutting, and sidewall functionalization
of multiwalled carbon nanotubes using potassium permanganate
solutions, J. Phys. Chem. C, 111 (2007) 2440–2446.
- M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, M.A. Hashim,
Functionalization of CNTs surface with phosphonuim based
deep eutectic solvents for arsenic removal from water, Appl.
Surf. Sci., 389 (2016) 216–226.
- B. Das, N. Mondal, R. Bhaumik, P. Roy, Insight into adsorption
equilibrium, kinetics and thermodynamics of lead onto alluvial
soil, Int. J. Environ. Sci. Technol., 11 (2014) 1101–1114.
- M.S. Kumar, B. Phanikumar, Response surface modelling of
Cr6+ adsorption from aqueous solution by neem bark powder:
Box–Behnken experimental approach, Environ. Sci. Pollut.
Res., 20 (2013) 1327–1343.
- A. Banerjee, P. Sarkar, S. Banerjee, Application of statistical
design of experiments for optimization of As (V) biosorption
by immobilized bacterial biomass, Ecol. Eng., 86 (2016) 13–23.
- S. Ayoob, A. Gupta, P. Bhakat, Performance evaluation of modified
calcined bauxite in the sorptive removal of arsenic (III)
from aqueous environment, Colloids Surf. A: Physicochem.
Eng. Asp., 293 (2007) 247–254.