References
- S. Li, Y. Gong, Y. Yang, C. He, L. Hu, L. Zhu, L. Sun, D. Shu,
Recyclable CNTs/Fe3O4 magnetic nanocomposites as adsorbents
to remove bisphenol A from water and their regeneration,
Chem. Eng. J., 260 (2015) 231–239.
- B. Pan, B. Xing, Adsorption mechanisms of organic chemicals on
carbon nanotubes, Environ. Sci. Technol., 42 (2008) 9005–9013.
- C. Ampelli, S. Perathoner, G. Centi, Carbon-based catalysts:
opening new scenario to develop next-generation nanoengineered
catalytic materials, Chin. J. Catal., 35 (2014) 783–791.
- A. Szabó, C. Perri, A. Csató, G. Giordano, D. Vuono, J.B. Nagy,
Synthesis methods of carbon nanotubes and related materials,
Materials, 3 (2010) 3092–3140.
- N.K. Dey, E.M. Hong, K.H. Choi, Y.D. Kim, J.-H. Lim, K.H.
Lee, D.C. Lim, Growth of carbon nanotubes on carbon fiber by
thermal CVD using Ni nanoparticles as catalysts, Procedia Eng.,
36 (2012) 556–561.
- M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, M.A. Hashim,
Functionalization of CNTs surface with phosphonuim based
deep eutectic solvents for arsenic removal from water, Appl.
Surf. Sci., 389 (2016) 216–226.
- K. Hernadi, A. Fonseca, P. Piedigrosso, M. Delvaux, J. Nagy, D.
Bernaerts, J. Riga, Carbon nanotubes production over Co/silica
catalysts, Catal. Lett., 48 (1997) 229–238.
- W.-T. Tsai, H.-C. Hsu, T.-Y. Su, K.-Y. Lin, C.-M. Lin, Adsorption
characteristics of bisphenol-A in aqueous solutions onto
hydrophobic zeolite, J. Colloid Interface Sci., 299 (2006) 513–519.
- S. Salehinia, S.M. Ghoreishi, F. Maya, V. Cerdà, Hydrophobic
magnetic montmorillonite composite material for the efficient
adsorption and microextraction of bisphenol A from water
samples, J. Environ. Chem. Eng., 4 (2016) 4062–4071.
- H. Wang, H. Ma, W. Zheng, D. An, C. Na, Multifunctional and
recollectable carbon nanotube ponytails for water purification,
ACS Appl. Mater. Interfaces, 6 (2014) 9426–9434.
- M. Ghaedi, A.G. Nasab, S. Khodadoust, M. Rajabi, S. Azizian,
Application of activated carbon as adsorbents for efficient
removal of methylene blue: kinetics and equilibrium study, J.
Ind. Eng. Chem., 20 (2014) 2317–2324.
- S. Bigdeli, S. Fatemi, Fast carbon nanofiber growth on the surface
of activated carbon by microwave irradiation: a modified nanoadsorbent
for deep desulfurization of liquid fuels, Chem. Eng.
J., 269 (2015) 306–315.
- D. Chen, K.O. Christensen, E. Ochoa-Fernández, Z. Yu, B.
Tøtdal, N. Latorre, A. Monzón, A. Holmen, Synthesis of
carbon nanofibers: effects of Ni crystal size during methane
decomposition, J. Catal., 229 (2005) 82–96.
- W. Cho, M. Schulz, V. Shanov, Growth termination mechanism
of vertically aligned centimeter long carbon nanotube arrays,
Carbon, 69 (2014) 609–620.
- D. Lopez, I.Y. Abe, I. Pereyra, Temperature effect on the
synthesis of carbon nanotubes and core–shell Ni nanoparticle
by thermal CVD, Diamond Relat. Mater., 52 (2015) 59–65.
- N.T. Abdel-Ghani, G.A. El-Chaghaby, F.S. Helal, Individual and
competitive adsorption of phenol and nickel onto multiwalled
carbon nanotubes, J. Adv. Res., 6 (2015) 405–415.
- S. Amelinckx, X. Zhang, D. Bernaerts, X. Zhang, V. Ivanov, J.
Nagy, A formation mechanism for catalytically grown helixshaped
graphite nanotubes, Opt. Commun., 2664 (1994) 977.
- N. Sankararamakrishnan, M. Jaiswal, N. Verma, Composite
nanofloral clusters of carbon nanotubes and activated alumina:
an efficient sorbent for heavy metal removal, Chem. Eng. J., 235
(2014) 1–9.
- M.A. AlSaadi, A. Al Mamun, M.Z. Alam, M.K. Amosa,
M.A. Atieh, Removal of cadmium from water by CNT–PAC
composite: effect of functionalization, Nano, 11 (2016) 1650011.
- K. Hernadi, A. Fonseca, J.B. Nagy, A. Siska, I. Kiricsi, Production
of nanotubes by the catalytic decomposition of different carboncontaining
compounds, Appl. Catal., A, 199 (2000) 245–255.
- A. Abo-Hamad, M.A. AlSaadi, M. Hayyan, I. Juneidi, M.A.
Hashim, Ionic liquid-carbon nanomaterial hybrids for
electrochemical sensor applications: a review, Electrochim.
Acta, 193 (2016) 321–343.
- S. Zheng, Z. Sun, Y. Park, G.A. Ayoko, R.L. Frost, Removal of
bisphenol A from wastewater by Ca-montmorillonite modified
with selected surfactants, Chem. Eng. J., 234 (2013) 416–422.
- M.H. Dehghani, M. Ghadermazi, A. Bhatnagar, P. Sadighara,
G. Jahed-Khaniki, B. Heibati, G. McKay, Adsorptive removal of
endocrine disrupting bisphenol A from aqueous solution using
chitosan, J. Environ. Chem. Eng., 4 (2016) 2647–2655.
- J. Xu, L. Wang, Y. Zhu, Decontamination of bisphenol A from
aqueous solution by graphene adsorption, Langmuir, 28 (2012)
8418–8425.
- M. Song, X. Tang, J. Xu, L. Yu, Y. Wei, The formation of novel
carbon/carbon composite by chemical vapor deposition: an
efficient adsorbent for enhanced desulfurization performance,
J. Anal. Appl. Pyrolysis, 118 (2016) 34–41.
- A.S. Adeleye, J.R. Conway, K. Garner, Y. Huang, Y. Su, A.A.
Keller, Engineered nanomaterials for water treatment and
remediation: costs, benefits, and applicability, Chem. Eng. J.,
286 (2016) 640–662.
- M. de la Luz-Asunción, V. Sánchez-Mendieta, A. Martínez-
Hernández, V. Castaño, C. Velasco-Santos, Adsorption of
phenol from aqueous solutions by carbon nanomaterials of
one and two dimensions: kinetic and equilibrium studies, J.
Nanomater., 16 (2015) 422.
- J. Kwon, B. Lee, Bisphenol A adsorption using reduced
graphene oxide prepared by physical and chemical reduction
methods, Chem. Eng. Res. Des., 104 (2015) 519–529.
- M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, M. Ibrahim,
M.A. Hashim, Allyl triphenyl phosphonium bromide based
DES-functionalized carbon nanotubes for the removal of
mercury from water, Chemosphere, 167 (2017) 44–52.
- Y.B. Onundi, A. Mamun, M. Al Khatib, M. Al Saadi, A.
Suleyman, Heavy metals removal from synthetic wastewater
by a novel nano-size composite adsorbent, Int. J. Environ. Sci.
Technol., 8 (2011) 799.
- M. Hussein, S. Zakarya, S. Sarijo, Z. Zainal, Parameter
optimisation of carbon nanotubes synthesis via hexane
decomposition over minerals generated from Anadara granosa
shells as the catalyst support, J. Nanomater., 2012 (2012) 90.
- M.A. AlSaadi, A. Al-Mamun, S.A. Muyibi, M.Z. Alam, I.
Sopyan, M.A. Atieh, Y.M. Ahmed, Synthesis of various carbon
nanomaterials (CNMs) on powdered activated carbon, Afr. J.
Biotechnol., 10 (2011) 18892–18905.
- Q. Sui, J. Huang, Y. Liu, X. Chang, G. Ji, S. Deng, T. Xie, G. Yu,
Rapid removal of bisphenol A on highly ordered mesoporous
carbon, J. Environ. Sci., 23 (2011) 177–182.
- Y. Dong, D. Wu, X. Chen, Y. Lin, Adsorption of bisphenol A
from water by surfactant-modified zeolite, J. Colloid Interface
Sci., 348 (2010) 585–590.
- M. Amini, H. Younesi, N. Bahramifar, A.A.Z. Lorestani, F.
Ghorbani, A. Daneshi, M. Sharifzadeh, Application of response
surface methodology for optimization of lead biosorption in
an aqueous solution by Aspergillus niger, J. Hazard. Mater., 154
(2008) 694–702.
- L.A. Ramírez-Montoya, V. Hernández-Montoya, M.A. Montes-Morán, Optimizing the preparation of carbonaceous adsorbents
for the selective removal of textile dyes by using Taguchi
methodology, J. Anal. Appl. Pyrolysis, 109 (2014) 9–20.
- V. Angulakshmi, N. Sivakumar, S. Karthikeyan, Response
surface methodology for optimizing process parameters for
synthesis of carbon nanotubes, J. Environ. Nanotechnol., 1
(2012) 40–45.
- A. Khuri, J. Cornell, Response Surfaces: Designs and Analyses,
Marcel Dekker Inc., New York (1987).
- K. Kalantari, M.B. Ahmad, H.R. Fard Masoumi, K. Shameli,
M. Basri, R. Khandanlou, Rapid and high capacity adsorption
of heavy metals by Fe3O4/montmorillonite nanocomposite
using response surface methodology: preparation,
characterization, optimization, equilibrium isotherms, and
adsorption kinetics study, J. Taiwan Inst. Chem. Eng., 49
(2015) 192–198.
- M. Roosta, M. Ghaedi, A. Daneshfar, R. Sahraei, A. Asghari,
Optimization of the ultrasonic assisted removal of methylene
blue by gold nanoparticles loaded on activated carbon using
experimental design methodology, Ultrason. Sonochem., 21
(2014) 242–252.
- J.C. Lazo-Cannata, A. Nieto-Márquez, A. Jacoby, A.L. Paredes-
Doig, A. Romero, M.R. Sun-Kou, J.L. Valverde, Adsorption of
phenol and nitrophenols by carbon nanospheres: effect of pH
and ionic strength, Sep. Purif. Technol., 80 (2011) 217–224.
- G. Bayramoglu, M.Y. Arica, G. Liman, O. Celikbicak, B.
Salih, Removal of bisphenol A from aqueous medium using
molecularly surface imprinted microbeads, Chemosphere, 150
(2016) 275–284.
- G. Liu, J. Ma, X. Li, Q. Qin, Adsorption of bisphenol A from
aqueous solution onto activated carbons with different
modification treatments, J. Hazard. Mater., 164 (2009)
1275–1280.
- L. Joseph, Q. Zaib, I.A. Khan, N.D. Berge, Y.-G. Park, N.B. Saleh,
Y. Yoon, Removal of bisphenol A and 17α-ethinyl estradiol from
landfill leachate using single-walled carbon nanotubes, Water
Res., 45 (2011) 4056–4068.
- F. Zhou, Q. Liu, W. Zhang, J. Gu, S. Zhu, D. Zhang, Fabrication
of 3D carbon nanotube/porous carbon hybrid materials, J.
Mater. Sci., 49 (2014) 548–557.
- G. Allaedini, S.M. Tasirin, P. Aminayi, Synthesis of Fe–Ni–
Ce trimetallic catalyst nanoparticles via impregnation and
co-precipitation and their application to dye degradation,
Chem. Pap., 70 (2015) 231–242.
- Y.C. Jung, B. Bhushan, Mechanically durable carbon nanotube−composite hierarchical structures with superhydrophobicity,
self-cleaning, and low-drag, ACS Nano, 3 (2009) 4155–4163.
- S.-P. Chai, K.-Y. Lee, S. Ichikawa, A.R. Mohamed, Synthesis
of carbon nanotubes by methane decomposition over Co–Mo/Al2O3: process study and optimization using response surface
methodology, Appl. Catal., A, 396 (2011) 52–58.
- J.I. Villacampa, C. Royo, E. Romeo, J.A. Montoya, P. Del Angel,
A. Monzon, Catalytic decomposition of methane over Ni-Al2O3
coprecipitated catalysts: reaction and regeneration studies,
Appl. Catal., A, 252 (2003) 363–383.
- F. Taleshi, A. Hosseini, M. Mohammadi, M. Pashaee, Effect
of hydrocarbon gas on synthesis and diameter of carbon
nanotubes, Indian J. Phys., 87 (2013) 873–877.
- W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, S. Xie,
Raman characterization of aligned carbon nanotubes produced
by thermal decomposition of hydrocarbon vapor, Appl. Phys.
Lett., 70 (1997) 2684–2686.
- M.K. AlOmar, M.A. Alsaadi, M.M. Aljumaily, S. Akib, T.M.
Jassam, M.A. Hashim, N,N-Diethylethanolammonium
chloride-based DES-functionalized carbon nanotubes for
arsenic removal from aqueous solution, Desal. Wat. Treat., 74
(2017) 163–173.
- J. Ziebro, I. Łukasiewicz, E. Borowiak-Palen, B. Michalkiewicz,
Low temperature growth of carbon nanotubes from methane
catalytic decomposition over nickel supported on a zeolite,
Nanotechnology, 21 (2010) 145308.
- S. Takenaka, S. Kobayashi, H. Ogihara, K. Otsuka, Ni/SiO2
catalyst effective for methane decomposition into hydrogen
and carbon nanofiber, J. Catal., 217 (2003) 79–87.
- W. Qian, T. Liu, F. Wei, Z. Wang, Y. Li, Enhanced production
of carbon nanotubes: combination of catalyst reduction and
methane decomposition, Appl. Catal., A, 258 (2004) 121–124.
- A. Hruzewicz-Kołodziejczyk, V.P. Ting, N. Bimbo, T.J. Mays,
Improving comparability of hydrogen storage capacities of
nanoporous materials, Int. J. Hydrogen Energy, 37 (2012)
2728–2736.
- D. Bom, R. Andrews, D. Jacques, J. Anthony, B. Chen, M.S.
Meier, J.P. Selegue, Thermogravimetric analysis of the
oxidation of multiwalled carbon nanotubes: evidence for the
role of defect sites in carbon nanotube chemistry, Nano Lett., 2
(2002) 615–619.
- J.R. Koduru, L.P. Lingamdinne, J. Singh, K.-H. Choo, Effective
removal of bisphenol A (BPA) from water using a goethite/activated carbon composite, Process Saf. Environ. Prot., 103
(2016) 87–96.
- C. Jung, A. Son, N. Her, K.-D. Zoh, J. Cho, Y. Yoon, Removal
of endocrine disrupting compounds, pharmaceuticals, and
personal care products in water using carbon nanotubes: a
review, J. Ind. Eng. Chem., 27 (2015) 1–11.
- K.A. Shah, B.A. Tali, Synthesis of carbon nanotubes by catalytic
chemical vapour deposition: a review on carbon sources,
catalysts and substrates, Mater. Sci. Semicond. Process., 41
(2016) 67–82.
- B. Bestani, N. Benderdouche, B. Benstaali, M. Belhakem, A.
Addou, Methylene blue and iodine adsorption onto an activated
desert plant, Bioresour. Technol., 99 (2008) 8441–8444.
- T. Hiraoka, T. Kawakubo, J. Kimura, R. Taniguchi, A. Okamoto,
T. Okazaki, T. Sugai, Y. Ozeki, M. Yoshikawa, H. Shinohara,
Selective synthesis of double-wall carbon nanotubes by CCVD
of acetylene using zeolite supports, Chem. Phys. Lett., 382
(2003) 679–685.
- Y.-S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- F. Cao, P. Bai, H. Li, Y. Ma, X. Deng, C. Zhao, Preparation
of polyethersulfone–organophilic montmorillonite hybrid
particles for the removal of bisphenol A, J. Hazard. Mater., 162
(2009) 791–798.
- L. Joseph, J. Heo, Y.-G. Park, J.R.V. Flora, Y. Yoon, Adsorption of
bisphenol A and 17α-ethinyl estradiol on single walled carbon
nanotubes from seawater and brackish water, Desalination, 281
(2011) 68–74.
- W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from
solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
- M.M. Nassar, Y.H. Magdy, A.E.H. Daifullah, H. Kelany, Mass
transfer and adsorption kinetics of phenolic compounds
onto activated carbon prepared from rice husk, Adsorpt. Sci.
Technol., 26 (2008) 157–167.
- C.-Y. Kuo, Comparison with as-grown and microwave
modified carbon nanotubes to removal aqueous bisphenol A,
Desalination, 249 (2009) 976–982.
- Y. Zhou, L. Chen, P. Lu, X. Tang, J. Lu, Removal of bisphenol
A from aqueous solution using modified fibric peat as a novel
biosorbent, Sep. Purif. Technol., 81 (2011) 184–190.
- B. Hameed, A. Ahmad, N. Aziz, Isotherms, kinetics and
thermodynamics of acid dye adsorption on activated palm ash,
Chem. Eng. J., 133 (2007) 195–203.
- K.-L. Chang, J.-F. Hsieh, B.-M. Ou, M.-H. Chang, W.-Y. Hseih,
J.-H. Lin, P.-J. Huang, K.-F. Wong, S.-T. Chen, Adsorption
studies on the removal of an endocrine-disrupting compound
(Bisphenol A) using activated carbon from rice straw agricultural
waste, Sep. Sci. Technol., 47 (2012) 1514–1521.
- D. Lin, B. Xing, Adsorption of phenolic compounds by carbon
nanotubes: role of aromaticity and substitution of hydroxyl
groups, Environ. Sci. Technol., 42 (2008) 7254–7259.
- O.G. Apul, T. Karanfil, Adsorption of synthetic organic
contaminants by carbon nanotubes: a critical review, Water
Res., 68 (2015) 34–55.
- I. Bautista-Toledo, M. Ferro-Garcia, J. Rivera-Utrilla, C. Moreno-
Castilla, F. Vegas Fernandez, Bisphenol A removal from water
by activated carbon. Effects of carbon characteristics and
solution chemistry, Environ. Sci. Technol., 39 (2005) 6246–6250.
- Y. Park, Z. Sun, G.A. Ayoko, R.L. Frost, Bisphenol A sorption
by organo-montmorillonite: implications for the removal of
organic contaminants from water, Chemosphere, 107 (2014)
249–256.
- W. Guo, W. Hu, J. Pan, H. Zhou, W. Guan, X. Wang, J. Dai, L.
Xu, Selective adsorption and separation of BPA from aqueous
solution using novel molecularly imprinted polymers based on
kaolinite/Fe3O4 composites, Chem. Eng. J., 171 (2011) 603–611.
- H. Yamasaki, Y. Makihata, K. Fukunaga, Efficient phenol
removal of wastewater from phenolic resin plants using
crosslinked cyclodextrin particles, J. Chem. Technol. Biotechnol.,
81 (2006) 1271–1276.
- F.-X. Qin, S.-Y. Jia, Y. Liu, H.-Y. Li, S.-H. Wu, Adsorptive
removal of bisphenol A from aqueous solution using metalorganic
frameworks, Desal. Wat. Treat., 54 (2015) 93–102.
- Z. Jin, X. Wang, Y. Sun, Y. Ai, X. Wang, Adsorption of
4-n-nonylphenol and bisphenol-A on magnetic reduced
graphene oxides: a combined experimental and theoretical
studies, Environ. Sci. Technol., 49 (2015) 9168–9175.