References

  1. D.Q. Melo, C.B. Vidal, T.C. Medeiros, G.S.C. Raulino, A.D. Luz, M.C. Pinheiro, R.F. Nascimento, Biosorption of metal ions using a low cost modified adsorbent (Mauritia flexuosa): experimental design and mathematical modeling, Environ. Technol., 37 (2016) 2157–2171.
  2. C.B. Vidal, D.Q. Melo, G.S.C. Raulino, A.D. Luz, C. Luz, R.F. Nascimento, Multielement adsorption of metal ions using Tururi fibers (Manicaria saccifera): experiments, mathematical modeling and numerical simulation, Desal. Wat. Treat., 57 (2016) 9001–9008.
  3. D.Q. Melo, V.O. Sousa Neto, F.C.F. Barros G.S.C. Raulino, C.B. Vidal, R.F. Nascimento, Chemical modifications of lignocellulosic materials and their application for removal of cations and anions from aqueous solutions, J. Appl. Polym. Sci., 133 (2016) 43286 (1–22).
  4. G.S.C. Raulino, C.B. Vidal, A.C.A. Lima, D.Q. Melo, J.T. Oliveira, R.F. Nascimento, Treatment influence on green coconut shells for removal of metal ions: pilot-scale fixed-bed column, Environ. Technol., 35 (2014) 1711–1720.
  5. K. Upadhyay, Solution for wastewater problem related to electroplating industry: an overview, J. Ind. Pollut. Control, 22 (2006) 59–66.
  6. F. Glombitza, Treatment of acid lignite mine flooding water by means of microbial sulfate reduction, Waste Manage., 21 (2001) 197–203.
  7. J.L. Huisman, G. Schouten, C. Schultz, Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry, Hydrometallurgy, 83 (2006) 106–113.
  8. D.Q. Melo, C.B. Vidal, A.L. da Silva, T.C. Medeiros, G.S.C. Raulino, R.N. Teixeira, P.B.A. Fechine, R.F. Nascimento, S.E. Mazzeto, D. Keukeleire, Removal of Cd2+, Cu2+, Ni2+ and Pb2+ ions from aqueous solutions using tururi fibers as an adsorbent. J. Appl. Polym. Sci., 131 (2014) 40883 (1–12).
  9. V.F. Albuquerque, A.L. Barros, A.C. Lopes, R.F. Nascimento, A.B. Santos, Removal of the metal ions Zn2+, Ni2+, and Cu2+ by biogenic sulfide in UASB reactor and speciation studies, Desal. Wat. Treat., 51 (2013) 2093–2101.
  10. A.E. Lewis, Review of metal sulphide precipitation, Hydrometallurgy, 104 (2010) 222–234.
  11. M. Gharabaghi, M. Irannajad, A.R. Azadmehr, Selective sulphide precipitation of heavy metals from acidic polymetallic aqueous solution by thioacetamide, Ind. Eng. Chem. Res., 51 (2012) 954–963.
  12. O. Jorquera, A. Kiperstok, E.A. Sales, M. Embiruçu, M.L. Ghirardi, S-systems sensitivity analysis of the factors that may influence hydrogen production by sulfur-deprived Chlamydomonas reinhardtii, Int. J. Hydrogen Energy, 33 (2008) 2167–2177.
  13. S. Janyasuthiwong, E.R. Rene, G. Esposito, P.N.L. Lens, Effect of pH on Cu, Ni and Zn removal by biogenic sulfide precipitation in an inversed fluidized bed bioreactor, Hydrometallurgy, 158 (2015) 94–100.
  14. M. Ye, G. Li, P. Yan, J. Ren, L. Zheng, D. Han, S. Sun, S. Huang, Y. Zhong, Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation, Chemosphere, 185 (2017) 1189–1196.
  15. C. Oh, Y.-S. Han, J.H. Park, S. Bok, Y. Cheong, G. Yim, S. Ji, Field application of selective precipitation for recovering Cu and Zn in drainage discharged from an operating mine, Sci. Total Environ., 557–558 (2016) 212–220.
  16. M. Lundström, J. Liipo, P. Taskinen, J. Aromaa, Copper precipitation during leaching of various copper sulfide concentrates with cupric chloride in acidic solutions, Hydrometallurgy, 166 (2016) 136–142.
  17. R.M.M. Sampaio, R.A. Timmers, Y. Xu, K.J. Keesman, P.N.L. Lens, Selective precipitation of Cu from Zn in a pS controlled continuously stirred tank reactor, J. Hazard. Mater., 165 (2009) 256–265.
  18. A. Lewis, R.V. Hille, An exploration into the sulphide precipitation method and its effect on metal sulphide removal, Hydrometallurgy, 81 (2006) 197–204.
  19. N. Karbanee, R.P. van Hille, A.E. Lewis, Controlled nickel sulfide precipitation using gaseous hydrogen sulfide, Ind. Eng. Chem. Res., 47 (2008) 1596–1602.
  20. R.W. Hammack, D.H. Dvorak, H.M. Edenborn, The Use of Biogenic Sulfide to Selectively Recover Cooper and Zinc from Severely Contaminated Mine Drainage, A.E. Torma, J.E. Wey, V.L. Lakshmanan, Eds., Biohydrometallugical Technologies, The Minerals, Metals and Materials Society, Warrendale, PA, 1993, pp. 631–639.
  21. A.A. Migdisov, A.E. Williams-Jones, L.Z. Lakshtanov, Y.V. Alekhin, Estimates of the second dissociation constant of H2S from the surface sulfidation of crystalline sulfur, Geochim. Cosmochim. Acta, 10 (2002) 1713–1725.
  22. J. Qian, X. Zhu, Y. Tao, Y. Zhou, X. He, D. Li, Promotion of Ni2+ removal by masking toxicity to sulfate-reducing bacteria: addition of citrate, Int. J. Mol. Sci., 16 (2015) 7932–7943.
  23. E. Skavås, A. Adriaens, T. Hemmingsen, A Comparative study of sulphite oxidation under alkaline conditions by use of walljet flow cell and rotating disc electrode, Int. J. Electrochem. Sci., 1 (2006) 414–424.
  24. W. Bryson, C.H. Bijsterveld, Kinetics of the precipitation of manganese and cobalt sulphides in the purification of a manganese sulphate electrolyte, Hydrometallurgy, 27 (1991) 75–84.
  25. G. Esposito, A. Veeken, J. Weijma, P.N.L. Lens, Use of biogenic sulfide for ZnS precipitation, Sep. Purif. Technol., 51 (2006) 31–39.
  26. M.T. Alvarez, C. Crespo, B. Mattiasson, Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids, Chemosphere, 66 (2007) 1677–1683.