References
- D.Q. Melo, C.B. Vidal, T.C. Medeiros, G.S.C. Raulino, A.D. Luz,
M.C. Pinheiro, R.F. Nascimento, Biosorption of metal ions using
a low cost modified adsorbent (Mauritia flexuosa): experimental
design and mathematical modeling, Environ. Technol., 37
(2016) 2157–2171.
- C.B. Vidal, D.Q. Melo, G.S.C. Raulino, A.D. Luz, C. Luz, R.F.
Nascimento, Multielement adsorption of metal ions using
Tururi fibers (Manicaria saccifera): experiments, mathematical
modeling and numerical simulation, Desal. Wat. Treat., 57
(2016) 9001–9008.
- D.Q. Melo, V.O. Sousa Neto, F.C.F. Barros G.S.C. Raulino,
C.B. Vidal, R.F. Nascimento, Chemical modifications of
lignocellulosic materials and their application for removal of
cations and anions from aqueous solutions, J. Appl. Polym. Sci.,
133 (2016) 43286 (1–22).
- G.S.C. Raulino, C.B. Vidal, A.C.A. Lima, D.Q. Melo, J.T. Oliveira,
R.F. Nascimento, Treatment influence on green coconut shells
for removal of metal ions: pilot-scale fixed-bed column,
Environ. Technol., 35 (2014) 1711–1720.
- K. Upadhyay, Solution for wastewater problem related to
electroplating industry: an overview, J. Ind. Pollut. Control, 22
(2006) 59–66.
- F. Glombitza, Treatment of acid lignite mine flooding water by
means of microbial sulfate reduction, Waste Manage., 21 (2001)
197–203.
- J.L. Huisman, G. Schouten, C. Schultz, Biologically produced
sulphide for purification of process streams, effluent treatment
and recovery of metals in the metal and mining industry,
Hydrometallurgy, 83 (2006) 106–113.
- D.Q. Melo, C.B. Vidal, A.L. da Silva, T.C. Medeiros, G.S.C.
Raulino, R.N. Teixeira, P.B.A. Fechine, R.F. Nascimento, S.E.
Mazzeto, D. Keukeleire, Removal of Cd2+, Cu2+, Ni2+ and Pb2+
ions from aqueous solutions using tururi fibers as an adsorbent.
J. Appl. Polym. Sci., 131 (2014) 40883 (1–12).
- V.F. Albuquerque, A.L. Barros, A.C. Lopes, R.F. Nascimento,
A.B. Santos, Removal of the metal ions Zn2+, Ni2+, and Cu2+ by
biogenic sulfide in UASB reactor and speciation studies, Desal.
Wat. Treat., 51 (2013) 2093–2101.
- A.E. Lewis, Review of metal sulphide precipitation,
Hydrometallurgy, 104 (2010) 222–234.
- M. Gharabaghi, M. Irannajad, A.R. Azadmehr, Selective
sulphide precipitation of heavy metals from acidic polymetallic
aqueous solution by thioacetamide, Ind. Eng. Chem. Res., 51
(2012) 954–963.
- O. Jorquera, A. Kiperstok, E.A. Sales, M. Embiruçu, M.L.
Ghirardi, S-systems sensitivity analysis of the factors that
may influence hydrogen production by sulfur-deprived
Chlamydomonas reinhardtii, Int. J. Hydrogen Energy, 33 (2008)
2167–2177.
- S. Janyasuthiwong, E.R. Rene, G. Esposito, P.N.L. Lens, Effect of
pH on Cu, Ni and Zn removal by biogenic sulfide precipitation
in an inversed fluidized bed bioreactor, Hydrometallurgy, 158
(2015) 94–100.
- M. Ye, G. Li, P. Yan, J. Ren, L. Zheng, D. Han, S. Sun, S. Huang,
Y. Zhong, Removal of metals from lead-zinc mine tailings
using bioleaching and followed by sulfide precipitation,
Chemosphere, 185 (2017) 1189–1196.
- C. Oh, Y.-S. Han, J.H. Park, S. Bok, Y. Cheong, G. Yim, S. Ji, Field
application of selective precipitation for recovering Cu and
Zn in drainage discharged from an operating mine, Sci. Total
Environ., 557–558 (2016) 212–220.
- M. Lundström, J. Liipo, P. Taskinen, J. Aromaa, Copper
precipitation during leaching of various copper sulfide
concentrates with cupric chloride in acidic solutions,
Hydrometallurgy, 166 (2016) 136–142.
- R.M.M. Sampaio, R.A. Timmers, Y. Xu, K.J. Keesman, P.N.L.
Lens, Selective precipitation of Cu from Zn in a pS controlled
continuously stirred tank reactor, J. Hazard. Mater., 165 (2009)
256–265.
- A. Lewis, R.V. Hille, An exploration into the sulphide
precipitation method and its effect on metal sulphide removal,
Hydrometallurgy, 81 (2006) 197–204.
- N. Karbanee, R.P. van Hille, A.E. Lewis, Controlled nickel
sulfide precipitation using gaseous hydrogen sulfide, Ind. Eng.
Chem. Res., 47 (2008) 1596–1602.
- R.W. Hammack, D.H. Dvorak, H.M. Edenborn, The Use of
Biogenic Sulfide to Selectively Recover Cooper and Zinc from
Severely Contaminated Mine Drainage, A.E. Torma, J.E. Wey,
V.L. Lakshmanan, Eds., Biohydrometallugical Technologies,
The Minerals, Metals and Materials Society, Warrendale, PA,
1993, pp. 631–639.
- A.A. Migdisov, A.E. Williams-Jones, L.Z. Lakshtanov, Y.V.
Alekhin, Estimates of the second dissociation constant of H2S
from the surface sulfidation of crystalline sulfur, Geochim.
Cosmochim. Acta, 10 (2002) 1713–1725.
- J. Qian, X. Zhu, Y. Tao, Y. Zhou, X. He, D. Li, Promotion of
Ni2+ removal by masking toxicity to sulfate-reducing bacteria:
addition of citrate, Int. J. Mol. Sci., 16 (2015) 7932–7943.
- E. Skavås, A. Adriaens, T. Hemmingsen, A Comparative study
of sulphite oxidation under alkaline conditions by use of walljet
flow cell and rotating disc electrode, Int. J. Electrochem. Sci.,
1 (2006) 414–424.
- W. Bryson, C.H. Bijsterveld, Kinetics of the precipitation
of manganese and cobalt sulphides in the purification of a
manganese sulphate electrolyte, Hydrometallurgy, 27 (1991)
75–84.
- G. Esposito, A. Veeken, J. Weijma, P.N.L. Lens, Use of biogenic
sulfide for ZnS precipitation, Sep. Purif. Technol., 51 (2006)
31–39.
- M.T. Alvarez, C. Crespo, B. Mattiasson, Precipitation of Zn(II),
Cu(II) and Pb(II) at bench-scale using biogenic hydrogen
sulfide from the utilization of volatile fatty acids, Chemosphere,
66 (2007) 1677–1683.