References

  1. Z.Y. Zhou, Y.P. Fan, M.J. Wang, Heavy metal contamination in vegetables and their control in China, Food. Rev. Int., 16 (2000) 239–255.
  2. I. Ali, V.K. Gupta, Advances in water treatment by adsorption technology, Nat. Protoc., 1 (2006) 2661–2667.
  3. A. Demirbas, Heavy metal adsorption onto agro-based waste materials: a review, J. Hazard. Mater., 157 (2008) 220–229.
  4. Y.Y. Shen, R.L. Yang, Y. Liao, J. Ma, H. Mao, S.L. Zhao, Tannin modified aminated silica as effective absorbents for removal of light rare earth ions in aqueous solution, Desal. Wat. Treat., 57 (2016) 18529–18536.
  5. Y. Yang, Z. Wei, X. Zhang, X. Chen, D. Yue, Q. Yin, L. Xiao, L. Yang, Biochar from Alternanthera philoxeroides could remove Pb(II) efficiently, Bioresour. Technol., 171 (2014) 227–232.
  6. B. Chen, M. Yuan, Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar, J. Soils Sediments, 11 (2011) 62–71.
  7. B. Chen, M. Yuan, L. Qian, Enhanced bioremediation of PAHcontaminated soil by immobilized bacteria with plant residue and biochar as carriers, J. Soils Sediments, 12 (2012) 1350–1359.
  8. A. Downie, P. Munroe, A. Cowie, L.V. Zwieten, D.M.S. Lau, Biochar as a geoengineering climate solution: hazard identification and risk management, Crit. Rev. Environ. Sci. Technol., 42 (2012) 225–250.
  9. G. Fang, J. Gao, C. Liu, D.D. Dionysiou, Y. Wang, D. Zhou, Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation, Environ. Sci. Technol., 48 (2014) 1902–1910.
  10. J. Lehmann, A handful of carbon, Nature, 447 (2007) 143–144.
  11. L. Qian, B. Chen, Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles, Environ. Sci. Technol., 47 (2013) 8759–8768.
  12. D. Woolf, J.E. Amonette, F.A. Streetperrott, J. Lehmann, S. Joseph, Sustainable biochar to mitigate global climate change, Nat. Commun., 1 (2010) 118–124.
  13. Y. Xu, B. Chen, Organic carbon and inorganic silicon speciation in rice-bran-derived biochars affect its capacity to adsorb cadmium in solution, J. Soils Sediments, 15 (2015) 60–70.
  14. J. Komkiene, E. Baltrenaite, Biochar as adsorbent for removal of heavy metal ions [cadmium (II), copper (II), lead (II), zinc (II)] from aqueous phase, Int. J. Environ. Sci. Technol., 13 (2016) 471–482.
  15. X. Xu, X. Cao, L. Zhao, H. Wang, H. Yu, B. Gao, Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manurederived biochar, Environ. Sci. Pollut. Res., 20 (2013) 358–368.
  16. C.H. Cheng, J. Lehmann, M.H. Engelhard, Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence, Geochim. Cosmochim. Acta, 72 (2008) 1598–1610.
  17. M. Farrell, T.K. Kuhn, L.M. Macdonald, T.M. Maddern, D.V. Murphy, P.A. Hall, B.P. Singh, K. Baumann, E.S. Krull, J.A. Baldock, Microbial utilisation of biochar-derived carbon, Sci. Total. Environ., 465 (2013) 288–297.
  18. S. Kwon, J.J. Pignatello, Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): pseudo-pore blockage by model lipid components and its implications for N2-probed surface properties of natural sorbents, Environ. Sci. Technol., 39 (2005) 7932–7939.
  19. C.H. Cheng, J. Lehmann, Ageing of black carbon along a temperature gradient, Chemosphere, 75 (2009) 1021–1027.
  20. D. Kołodyńska, R. Wnętrzak, J.J. Leahy, M.H.B. Hayes, W. Kwapiński, Z. Hubicki, Kinetic and adsorptive characterization of biochar in metal ions removal, Chem. Eng. J., 197 (2012) 295–305.
  21. Y. Guo, W. Tang, J. Wu, Z. Huang, J. Dai, Mechanism of Cu(II) adsorption inhibition on biochar by its aging process, J. Environ. Sci., 26 (2014) 2123–2130.
  22. W. Miao, Ageing Effect of Biochar on Soil Nutrients and Growth of Rice, Shenyang Agricultural University, Shenyang, China, 2014 (In Chinese).
  23. X. Ren, H. Sun, F. Wang, F. Cao, The changes in biochar properties and sorption capacities after being cultured with wheat for 3 months, Chemosphere, 144 (2016) 2257–2263.
  24. L. Qian, B. Chen, Interactions of Aluminum with biochars and oxidized biochars: implications for the biochar aging process, J. Agric. Food Chem., 62 (2014) 373–380.
  25. X.D. Cao, W. Harris, Properties of dairy-manure-derived biochar pertinent to its potential use in remediation, Bioresour. Technol., 101 (2010) 5222–5228.
  26. X. Peng, L.L. Ye, C.H. Wang, H. Zhou, B. Sun, Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China, Soil Tillage Res., 112 (2011) 159–166.
  27. Z. Zeng, S.D. Zhang, T.Q. Li, F.L. Zhao, Z.L. He, H.P. Zhao, X.E. Yang, H.L. Wang, J. Zhao, M.T. Rafiq, Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants, J. Zhejiang Univ. Sci. B, 14 (2013) 1152–1161.
  28. L. Zhao, X. Cao, O. Mašek, A. Zimmerman, Heterogeneity of biochar properties as a function of feedstock sources and production temperatures, J. Hazard. Mater., 256–257 (2013) 1–9.
  29. D. Mohan, C.U. Pittman, M. Bricka, F. Smith, B. Yancey, J. Mohammad, P.H. Steele, M.F. Alexandre-Franco, V. Gómez-Serrano, H. Gong, Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production, J. Colloid Interface Sci., 310 (2007) 57–73.
  30. M. Nadeem, A. Mahmood, S.A. Shahid, S.S. Shah, A.M. Khalid, G. Mckay, Sorption of lead from aqueous solution by chemically modified carbon adsorbents, J. Hazard. Mater., 138 (2006) 604–613.