References

  1. C.G. Jäger, J. Hagemann, D. Borchardt, Can nutrient pathways and biotic interactions control eutrophication in riverine ecosystems? Evidence from a model driven mesocosm experiment, Water Res., 115 (2017) 162–171.
  2. D.J. Wan, Y.D. Liu, Y.Y. Wang, H.J. Wang, S.H. Xiao, Simultaneous bio-autotrophic reduction of perchlorate and nitrate in a sulfur packed bed reactor: kinetics and bacterial community structure, Water Res., 108 (2017) 280–292.
  3. Y. Sun, M. Nemati, Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters, Bioresour. Technol., 114 (2012) 207–216.
  4. C. Prasse, D. Stalter, U. Schulte-Oehlmann, J. Oehlmann, T.A. Ternes, Spoilt for choice: a critical review on the chemical and biological assessment of current wastewater treatment technologies, Water Res., 87 (2015) 237–270.
  5. M. Henze, M.C.M. Van Loosdrecht, G.A. Ekama, D. Brdjanovic, Biological wastewater treatment: principles, modelling and design, IWA Publishing, London (in Chinese), 2008.
  6. J. Ahn, T. Daidou, S. Tsuneda, A. Hirata, Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay, Water Res., 36 (2002) 403–412.
  7. P.S. Barker, P.L. Dold, Denitrification behaviour in biological excess phosphorus removal activated sludge system, Water Res., 30 (1996) 769–780.
  8. G. Cao, S. Wang, Y. Peng, Z. Miao, Biological nutrient removal by applying modified four step-feed technology to treat weak wastewater, Bioresour. Technol., 128 (2013) 604–611.
  9. X.H. Wang, L.X. Jiang, Y.J. Shi, M.M. Gao, S. Yang, S.G. Wang, Effects of step-feed on granulation processes and nitrogen removal performances of partial nitrifying granules, Bioresour. Technol., 123 (2012) 375–381.
  10. X. Zhang, S. Zheng, X. Xiao, L. Wang, Y. Yin, Simultaneous nitrification/denitrification and stable sludge/water separation achieved in a conventional activated sludge process with severe filamentous bulking, Bioresour. Technol., 226 (2017) 267–261.
  11. X. Zhang, D. Zhang, Q. He, H. Ai, P. Lu, Shortcut nitrification–denitrification in a sequencing batch reactor by controlling aeration duration based on hydrogen ion production rate online monitoring, Environ. Technol., 35 (2014) 1478–1483.
  12. E. Gogina, I. Gulshin, Simultaneous nitrification and denitrification with low dissolved oxygen level and C/N ratio, Procedia Eng., 153 (2016) 189–194.
  13. B. Ma, S. Wang, S. Cao, Y. Miao, F. Jia, R. Du, Y. Peng, Biological nitrogen removal from sewage via anammox: recent advances, Bioresour. Technol., 200 (2016) 981–990.
  14. J. Yang, J. Trela, M. Zubrowska-Sudol, E. Plaza, Intermittent aeration in one-stage partial nitritation/anammox process, Ecol. Eng., 75 (2015) 413–420.
  15. D. Wei, X. Xue, L. Yan, M. Sun, G. Zhang, L. Shi, B. Du, Effect of influent ammonium concentration on the shift of full nitritation to partial nitrification in a sequencing batch reactor at ambient temperature, Chem. Eng. J., 235 (2014) 19–26.
  16. S.J. Ge, Y.P. Zhu, C.C. Lu, S.Y. Wang, Y.Z. Peng, Full-scale demonstration of step feed concept for improving an anaerobic/anoxic/aerobic nutrient removal process, Bioresour. Technol., 120 (2012) 305–313.
  17. Y.Z. Peng, S.J. Ge, Enhanced nutrient removal in three type of step feeding process from municipal wastewater, Bioresour. Technol., 102 (2011) 6405–6413.
  18. W. Zeng, L. Li, Y.Y. Yang, S.Y. Wang, Y.Z. Peng, Nitritation and denitritation of domestic wastewater using continuous anaerobic-anoxic-aerobic (A2O) process at ambient temperatures, Bioresour. Technol., 101 (2010) 8074–8082.
  19. Y. Chen, B. Li, L. Ye, Y. Peng, The combined effects of COD/N ratio and nitrate recycling ratio on nitrogen and phosphorus removal in anaerobic/anoxic/aerobic (A2/O)-biological aerated filter (BAF) systems, Biochem. Eng. J., 93 (2015) 235–242.
  20. H. Li, B. Zhou, Z. Tian, Y. Song, L. Xiang, S. Wang, C. Sun, Efficient biological nitrogen removal by Johannesburg-Sulfur autotrophic denitrification from low COD/TN ratio municipal wastewater at low temperature, Environ. Earth Sci., 73 (2015) 5027–5035.
  21. Z.R. Chu, K. Wang, X.K. Li, M.T. Zhu, L. Yang, J. Zhang, Microbial characterization of aggregates within a one-stage nitritation–anammox system using high-throughput amplicon sequencing, Chem. Eng. J., 262 (2015) 41–48.
  22. D. Shu, Y. He, H. Yue, Q. Wang, Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing, Bioresour. Technol., 186 (2015) 163–172.
  23. Z. Xie, Z. Wang, Q. Wang, C. Zhu, Z. Wu, An anaerobic dynamic membrane bioreactor (AnDMBR) for landfill leachate treatment: performance and microbial community identification, Bioresour. Technol., 161 (2014) 29–39.
  24. T. Zhang, M.F. Shao, L. Ye, 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants, ISME J., 6 (2012) 1137–1147.
  25. APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association/American Water Works Association/Water Environment Federation, Washington, D.C., 2005.
  26. J. Gao, X. Luo, G. Wu, T. Li, Y.Z. Peng, Abundance and diversity based on amoA genes of ammonia-oxidizing archaea and bacteria in ten wastewater treatment system, Appl. Microbiol. Biotechnol., 98 (2014) 3339–3354.
  27. C. Sundberg, W.A. Al-Soud, M. Larsson, C. Alm, S.S. Yekta, B.H. Svensson, S.J. Sørensen, A. Karlsson, 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters, FEMS Microbiol. Ecol., 85 (2013) 612–626.
  28. L. Ye, T. Zhang, Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing, Appl. Microbiol. Biotechnol., 97 (2013) 2681–2690.
  29. D. Riviere, V. Desvignes, E. Pelletier, S. Chaussonnerie, S. Guermazi, J. Weissenbach, T. Li, P. Camacho, A. Sghir, Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge, ISME J., 3 (2009) 700–714.
  30. C.J.F. Ter Braak, I.C. Prentice, A theory of gradient analysis, Adv. Ecol. Res., 18 (1988) 271–317.
  31. M. Sadyś, A. Strzelczak, A. Grinn-Gofroń, R. Kennedy, Application of redundancy analysis for aerobiological data, Int. J. Biometeorol., 59 (2015) 25–36.
  32. Y. Chen, Z. Zhao, Y. Peng, Y.K. Peng, L. Xiao, L.Y. Yang, Performance of a full-scale modified anaerobic/anoxic/oxic process: high-throughput sequence analysis of its microbial structures and their community functions, Bioresour. Technol., 202 (2016) 225–232.
  33. H. Li, B. Zhou, Z. Tian, Y. Song, H. Yu, L. Xiang, S. Wang, C. Sun, Johannesburg-sulfur autotrophic denitrification system treatment of municipal wastewater with a low COD/TN ratio: performance, material balance and bacterial community, Desal. Wat. Treat., 59 (2017) 99–113.
  34. J. Liu, H. Zhang, P. Zhang, Y. Wu, X. Gou, Y. Song, Z. Tian, G. Zeng, Two-stage anoxic/oxic combined membrane bioreactor system for landfill leachate treatment: pollutant removal performances and microbial community, Bioresour. Technol., 243 (2017) 738–746.
  35. X. Hu, L. Xie, H. Shim, S. Zhang, D. Yang, Biological nutrient removal in a full scale anoxic/anaerobic/aerobic/pre-anoxic-MBR plant for low C/N ratio municipal wastewater treatment, Chin. J. Chem. Eng., 22 (2014) 447–454.
  36. G. Mannina, G.A. Ekama, M. Capodici, A. Cosenza, D.D. Trapani, H. Ødegaard, Moving bed membrane bioreactors for carbon and nutrient removal: the effect of C/N variation, Biochem. Eng. J., 125 (2017) 31–40.
  37. S. Zhang, Z. Huang, S. Lu, J. Zheng, X. Zhang, Nutrients removal and bacterial community structure for low C/N municipal wastewater using a modified anaerobic/anoxic/oxic (mA2/O) process in North China, Bioresour. Technol., 243 (2017) 975–985.