References

  1. Ch.W. Cheung, Ch.K. Chan, J.F. Porter, G. McKay, Combined diffusion model for the sorption of cadmium, copper, and zinc ions onto bone char, Environ. Sci. Technol., 35 (2001) 1511–1522.
  2. T.G. Chuah, A. Jumasiah, I. Azni, S. Katayon, S.Y.T. Choong, Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview, Desalination, 175 (2005) 305–316.
  3. K.K. Krishnani, X. Meng, C. Christodoulatos, V.M. Boddu, Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk, J. Hazard. Mater., 153 (2008) 1222–1234.
  4. K. Pakshiranja, A.N. Worku, M.A. Acheampong, H.J. Lubberding, P.N.L. Lens, Cr(III) and Cr(VI) removal from aqueous solutions by cheaply available fruit waste and algal biomass, Appl. Biochem. Biotechnol., 170 (2013) 498–513.
  5. K.K. Singh, S.H. Hasan, M. Talat, V.K. Singh, S.K. Gangwar, Removal of Cr (VI) from aqueous solutions using wheat bran, Chem. Eng. J., 151 (2009) 113–121.
  6. U. Farroq, J.A. Kozinski, M.A. Khan, M. Athar, Biosorption of heavy metal ions wheat based biosorbents – a review on the recent literature, Bioresour. Technol., 101 (2010) 5043–5053.
  7. S. Rangabhashiyam, N. Selvaraju, B.R. Mohan, P.K.M. Anzil, K.D. Amith, E.R. Ushakumary, Hydrous cerium oxide nanoparticles impregnated Enteromorpha sp. for the removal of hexavalent chromium from aqueous solutions, J. Environ. Eng., 142 (2016) 1–9.
  8. J.V. Flores-Cano, A. Aragón-Pin, R. Leyva-Ramos, J.J. Salazar-Rabago, F. Carrasco-Marin, S. Leyva-Ramos, Adsorption mechanism of chromium(III) from water solution on bone char: effect of operating conditions, Adsorption, 22 (2016) 297–308.
  9. G. López-Téllez, C.E. Barrera-Díaz, P. Balderas-Hernández, G. Roa-Morales, B. Bilyeu, Removal of hexavalent chromium in aquatic solutions by iron nanoparticles embedded in orange peel pith, Chem. Eng. J., 173 (2011) 480–485.
  10. N.Ch. Feng, X. Guo, S. Liang, Y. Zhu, J. Liu, Biosorption of heavy metals from aqueous solutions by chemically modified orange peel, J. Hazard. Mater., 185 (2011) 49–54.
  11. E. Nakkeeran, S. Rangabhashiyam, M.S. Giri Nandagopal, N. Selvaraju, Removal of Cr (VI) from aqueous solution using Strychnos nux-vomica shell as an adsorbent, Desal. Wat. Treat., 57 (2016) 23951–2396.
  12. S. Rangabhashiyam, N. Selvaraju, Evaluation of the biosorption potential of a novel Caryota urens inflorescence waste biomass for the removal of hexavalent chromium from aqueous solutions, J. Taiwan Inst. Chem. Eng., 47 (2015) 59–70.
  13. S. Rangabhashiyam, M.S. Giri Nandagopal, E. Nakkeeran, N. Selvaraju, Adsorption of hexavalent chromium from synthetic and electroplating effluent on chemically modified Swietenia mahagoni shell in a packed bed column, Environ. Monit. Assess., 188 (2016) 411.
  14. S. Rangabhashiyam, M.S. Giri Nandagopal, E. Nakkeeran, R. Keerthi, N. Selvaraju, Use of Box–Behnken design of experiments for the adsorption of chromium using immobilized macroalgae, Desal. Wat. Treat., 57 (2016) 1–13.
  15. S. Rangabhashiyam, N. Selvaraju, Efficacy of unmodified and chemically modified Swietenia mahagoni shells for the removal of hexavalent chromium from simulated wastewater, J. Mol. Liq., 209 (2015) 487–497.
  16. E. Nakkeeran, N. Saranya, M.S. Giri Nandagopal, A. Santhiagu, N. Selvaraju, Hexavalent chromium removal from aqueous solutions by a novel powder, prepared from Colocasia esculenta leaves, Int. J. Phytorem., 18 (2016) 812–821.
  17. F. Fenglian, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  18. S. Gupta, B.V. Babu, Adsorption of Chromium (VI) by a Lowcost Adsorbent Prepared from Tamarind Seeds, Paper Presented at CHEMCON-2006, India, 27–30 Dec, 2006.
  19. S. Rangabhashiyam, E. Suganya, Alen Varghese Lity, Equilibrium and kinetics studies of hexavalent chromium biosorption on a novel green macroalgae Enteromorpha sp., Res. Chem. Intermed., 42 (2016) 1275–1294.
  20. M. Aliabadi, K. Morshedzadeh, H. Soheyli, Removal of hexavalent chromium from aqueous solution by lignocellulosic solid wastes, Int. J. Environ. Sci. Technol., 3 (2006) 321–325.
  21. S. Rangabhashiyam, E. Suganya, N. Selvaraju, Packed bed column investigation on hexavalent chromium adsorption using activated carbon prepared from Swietenia mahagoni fruit shells, Desal. Wat. Treat., 57 (2015) 13048–13055.
  22. W.S. Wan Ngah, M.A.K.M. Hanafiah, Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review, Bioresour. Technol., 99 (2008) 3935–3948.
  23. H.A. Hegazi; Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents, HBRC J., 9 (2013) 276–282.
  24. A. Fathima, R. Aravindhan, J. Raghava Rao, B. Unni Nair, Biomass of Termitomyces clypeatus for chromium(III) removal from chrome tanning wastewater, Clean Technol. Environ. Policy, 17 (2015) 541–547.
  25. G. Asgari, A.R. Rahmani, J. Faradmal, A. Motaleb, S. Mohammadi, Kinetic and isotherm of hexavalent chromium adsorption onto nano hydroxyapatite, J. Res. Health Sci., 12 (2012) 45–53.
  26. M. Sadat-Shojai, M.T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi, Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomater., 9 (2013) 7591–7621.
  27. J. Brzezińska-Miecznik, K. Haberko, M.M. Bućko, G. Grzegorz, M. Sitarz, Hydroxyapatite from animal bones – extraction and properties, Ceram. Int., 41 (2015) 4841–4846.
  28. T.A.R.M. Lima, N.S. Brito, J.A. Peixoto, M.E.G. Valerio, The incorporation of chromium (III) into hydroxyapatite crystals, Mater. Lett., 140 (2015) 187–191.
  29. S. Hokkanen, A. Bhatnagar, E. Repo, S. Lou, M. Sillanpää, Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr(VI) from aqueous solution, Chem. Eng. J., 283 (2016) 445–452.
  30. I. Mobasherpour, E. Salahi, M. Pazouki, Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: adsorption isotherm study, Arabian J. Chem., 5 (2012) 439–446.
  31. S.R. Dutta, D. Passi, P. Singh, A. Bhuibhar, Ceramic and nonceramic hydroxyapatite as a bone graft material: a brief review, Irish J. Med. Sci., 184 (2015) 101–106.
  32. A. Doostmohammadi, A. Monshi, R. Salehi, M.H. Fathi, S. Karbasid, U. Pieles, A.U. Daniels, Preparation, chemistry and physical properties of bone-derived hydroxyapatite particles having a negative zeta potential, Mater. Chem. Phys., 132 (2012) 446–452.
  33. Ž. Radovanović, B. Jokić, D. Veljović, S. Dimitrijević, V. Kojić, R. Petrović, D. Janaćković, Antimicrobial activity and biocompatibility of Ag+- and Cu2+-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+ -and- Cu2+ doped hydroxyapatite, Appl. Surf. Sci., 307 (2014) 513–519.
  34. L. Hakim, Z. Yaakob, M. Ismail, W.R. Wan Daud, R. Sari, Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts, Chem. Pap., 67 (2013) 703–712.
  35. Y. Ono, T. Rachi, M. Yokouchi, Y. Kamimoto, A. Nakajima, K. Okada, Photo-oxidation of gaseous ethanol on photocatalyst prepared by acid leaching of Titanium oxide/hydroxyapatite composite, Mater. Res. Bull., 48 (2013) 2272–2278.
  36. H.R. Low, M. Avdeev, K. Ramesh, T.J. White, Zinc hydroxyapatite catalyst for decomposition of 2-propanol, Adv. Mater., 24 (2012) 4175–4179.
  37. C. Boucetta, M. Kacimi, A. Ensuque, J.Y. Piquemal, F. Bozon- Verduraz, M. Ziyad, Oxidative dehydrogenation of propane over chromium-loaded calcium-hydroxyapatite, Appl. Catal., A, 356 (2009) 201–210.
  38. A.L. Giraldo-Betancur, D.G. Espinosa-Arbelaez, A. del Real-López, B.M. Millan-Malo, E.M. Rivera-Muñoz, E. Gutierrez-Cortez, P. Pineda-Gomez, S. Jimenez-Sandoval, M.E. Rodriguez-García, Comparison of physicochemical properties of bio and commercial hydroxyapatite, Curr. Appl. Phys., 13 (2013) 1383–1390.
  39. T. Wen-Qing, Z. Rong-Ying, F. Yong-Lan, L. Xiao-Ming, Z. Wei, Removal of Cr(VI) from aqueous solution by nano-carbonate hydroxylapatite of different Ca/P molar ratios, Chem. Eng. J., 223 (2013) 340–346.
  40. F. Fernane, S. Boudia, F. Aiouache, Removal Cu (II) and Ni (II) by natural and synthetic hydroxyapatites: a comparative study, Desal. Wat. Treat., 52 (2014) 2856–2862.
  41. Y. Huang, L. Chen, H. Wang, Removal of Co (II) from aqueous solution by using hydroxyapatite, J. Radioanal. Nucl. Chem., 291 (2012) 777–785.
  42. M. Kapur, M.K. Mondal, Competitive sorption of Cu (II) and Ni (II) ions from aqueous solutions: kinetics, thermodynamics and desorption studies, J. Taiwan Inst. Chem. Eng., 45 (2014) 1803–1813.
  43. F. Tamimi, S. Zeeshan, J. Barralet, Dicalcium phosphate cements: brushite and monetite, Acta Biomater., 8 (2012) 474–487.
  44. D. Pham Minh, N.D. Tran, A. Nzihou, P. Sharrock, Calcium phosphate based materials starting from calcium carbonate and orthophosphoric acid for the removal of lead (II) from an aqueous solution, Chem. Eng. J., 243 (2014) 280–288.
  45. M. Mourabet, H. El Boujaady, A. El Rhilassi, H. Ramdane, M. Bennani-Ziatni, R. El Hamri, A. Taitai, Defluoridation of water using brushite: equilibrium, kinetic and thermodynamic studies, Desalination, 278 (2011) 1–9.
  46. H.E.L. Madsen, Influence of foreign metal ions on crystal growth and morphology of brushite (CaHPO4·2H2O) and its transformation to octacalcium phosphate and apatite, J. Cryst. Growth, 310 (2008) 2602–2612.
  47. A. El Hamidi, S. Arsalane, M. Malim, Kinetics and isotherm studies of copper removal by brushite calcium phosphate: linear and non-linear regression comparison, E-J. Chem., 9 (2012) 1532–1542.
  48. A. El Hamidi, R. Mulongo Masamba, M. Khachani, M. Halim, S. Arsalane, Kinetics modeling in liquid phase sorption of copper ions on brushite di-calcium phosphate di-hydrate CaHPO4·2H2O (DCPD), Desal. Wat. Treat., 56 (2015) 779–791.
  49. I.G. Becerril-Juárez, R.A. Morales-Luckie, F. Ureña-Nuñez, J.A. Arenas-Alatorre, J.P. Hinestroza, V. Sanchez-Mendieta, Silver micro-, submicro- and nano-crystals using bovine bone as template. Formation of a silver/bovine bone composite, Mater. Lett., 85 (2012) 157–160.
  50. D.L. Trimm, Thermal Stability of Catalyst Support, C.H. Bartholomew, J.B. Butt, Eds., Catalyst Deactivation, Elsevier Science, Vol. 68, United States, 1991.
  51. J.P. Reymond, F. Kolenda, Estimation of the point of zero charge of simple and mixed oxides by mass titration, Powder Technol., 103 (1999) 30–36.
  52. G. Blázquez, M. Calero, A. Ronda, G. Tenorio, M.A. Martín-Lara, Study of kinetics in the biosorption of lead onto native and chemically treated olive stone, J. Ind. Eng. Chem., 20 (2014) 2754–2760.
  53. R. Sudha, K. Srinivasan, P. Premkumar, Removal of nickel (II) from aqueous solution using Citrus limettioides peel and seed carbón, Ecotoxicol. Environ. Saf., 117 (2015) 115–123.
  54. X.S. Wang, Y. Zhou, Y. Jiang, C. Sun, The removal of basic dyes from aqueous solutions using agricultural by-products, J. Hazard. Mater., 157 (2008) 374–385.
  55. S. Elabbas, L. Mandi, F. Berrekhis, M.N. Pons, J.P. Leclerc, N. Ouazzani, Removal of Cr (III) from chrome tanning wastewater by adsorption using two natural carbonaceous materials: eggshell and powdered marble, J. Environ. Manage., 166 (2016) 589–595.
  56. N. Saranya, E. Nakkeeran, S. Shrihari, N. Selvaraju, Equilibrium and kinetic studies of hexavalent chromium removal using a novel biosorbent: Ruellia patula Jacq, Arab. J. Sci. Eng., 42 (2017) 1545–1557.
  57. E. Suganya, S. Rangabhashiyam, A.V. Lity, N. Selvaraju, Removal of hexavalent chromium from aqueous solution by a novel biosorbent Caryota urens seeds: equilibrium and kinetic studies, Desal. Wat. Treat., 57 (2016) 23940–23950.
  58. N. Saranya, E. Nakeeran, M.S. Giri Nandagopal, N. Selvaraju, Optimization of adsorption process parameters by response surface methodology for hexavalent chromium removal from aqueous solutions using Annona reticulata Linn peel microparticles, Water Sci. Technol., 75 (2017) 2094–2107.
  59. K. Pei-Sin, H. Yung-Tse, L. Siew-Ling, O. Siew-Teng, H. Sie- Tiong, Removal of hazardous heavy metals from aqueous environment by low-cost adsorption materials, Environ. Chem. Lett., 12 (2014) 15–25.
  60. E. Pehlivan, E. Pehlivan, H. Tutar Kahraman, Hexavalent chromium removal by Osage Orange, Food Chem., 133 (2012) 1478–1484.
  61. R. Vani, E.K. Girija, M. Palanichamy, S. Narayana Kalkura, Simultaneous crystallization of calcium phosphate and calcium oxalate in the presence of ascorbic acid under physiological conditions, Mater. Sci. Eng., C, 29 (2009) 1227–1232.
  62. M. Parvinzadeh Gashti, M. Bourquin, M. Stir, J. Hulliger, Glutamic acid inducing kidney stone biomimicry by a brushite/gelatin composite, J. Mater. Chem. B, 1 (2013) 1501–1508.
  63. V. Thangadurai, P. Kopp, Chemical synthesis of Ca-doped CeO2—intermediate temperature oxide ion electrolytes, J. Power Sources, 168 (2007) 178–183.
  64. M. Suat Aksoy, Study of the interaction between chromium (III) and hydroxamic acids, J. Chem. Eng. Data, 55 (2010) 2252–2256.
  65. T. Sopcak, L. Medvecky, M. Giretova, R. Stulajterova, J. Durisin, V. Girman, M. Faberova, Effect of phase composition of calcium silicate phosphate component on properties of brushite based composite cements, Mater. Charact., 117 (2016) 17–29.
  66. S.M. Arifuzzaman, S. Rohani, Experimental study of brushite precipitation, J. Cryst. Growth, 267 (2004): 624–634.
  67. B.M. Weckhuysen, A.A. Verberckmoes, J. Debaere, K. Ooms, I. Langhans, R.A. Schoonheydt, In situ UV–Vis diffuse reflectance spectroscopy – on line activity measurements of supported chromium oxide catalysts: relating isobutane dehydrogenation activity with Cr-speciation via experimental design, J. Mol. Catal. A: Chem., 151 (2000) 115–131.
  68. M.M. Mirković, T.D. Lazarević Pašti, A.M. Došen, M.Ž. Čebela, A.A. Rosić, B.Z. Matović, B.M. Babić, Adsorption of malathion on mesoporous monetite obtained by mechanochemical treatment of brushite, RSC Adv., 6 (2016) 12219–12225.