References

  1. M. ud Din, H.N. Bhatti, M. Yasir, A. Ashraf, Direct dye biosorption by immobilized barley husk, Desal. Water Treat., 57 (2016) 9263–9271.
  2. M. Asif Tahir, H.N. Bhatti, M. Iqbal, Solar Red and Brittle Blue direct dyes adsorption onto Eucalyptus angophoroides bark: equilibrium, kinetics and thermodynamic studies, J. Environ. Chem. Eng., 4 (2016) 2431–2439.
  3. S. Liu, Y. Ding, P. Li, K. Diao, X. Tan, F. Lei, Y. Zhan, et al., Adsorption of the anionic dye Congo red from aqueous solution onto natural zeolites modified with N,N-dimethyl dehydroabietylamine oxide, Chem. Eng. J., 248 (2014) 135– 144.
  4. J.S. Cao, J.X. Lin, F. Fang, M.T. Zhang, Z.R. Hu, A new absorbent by modifying walnut shell for the removal of anionic dye: Kinetic and thermodynamic studies, Bioresour. Technol., 163 (2014) 199–205.
  5. H.N. Bhatti, S. Nausheen, Equilibrium and kinetic modeling for the removal of Turquoise Blue PG dye from aqueous solution by a low-cost agro waste, Desal. Water Treat., 55 (2015) 1943– 1944.
  6. H.N. Bhatti, S. Noreen, N. Tahir, S. Ilyas, U.H. Siddiqua, Equilibrium, thermodynamic and kinetic studies for biosorption of Terasil Brown 2RFL from contaminated water using economical biomaterial, Mediterranean J. Chem., 4 (2015) 239–251.
  7. M.Z. Kabir, A.K. Mukarram, S.B. Mohamad, Z. Alias, S. Tayyab, Characterization of the binding of an anticancer drug, lapatinib to human serum albumin, J. Photochem. Photobiol. B, 160 (2016) 229–239.
  8. A. Mittal, R. Ahmad, I. Hasan, Biosorption of Pb2+, Ni2+ and Cu2+ ions from aqueous solutions by L-cystein-modified montmorillonite-immobilized alginate nanocomposite, Desal. Water Treat., (2015) 1–18.
  9. J. Mittal, A. Mittal, Green chemistry for dyes removal from wastewater: research trends and applications, 409 (2015).
  10. M. Naushad, A. Mittal, M. Rathore, V. Gupta, Ion-exchange kinetic studies for Cd(II), Co(II), Cu(II), and Pb(II) metal ions over a composite cation exchanger, Desal. Water Treat., 54 (2015) 2882–2890.
  11. A. Mittal, R. Ahmad, I. Hasan, Iron oxide-impregnated dextrin nanocomposite: synthesis and its application for the biosorption of Cr(VI) ions from aqueous solution, Desal. Water Treat., 57 (2016) 15133–15145.
  12. A. Mittal, L. Kurup, Column operations for the removal and recovery of a hazardous dye ‘acid red - 27’ from aqueous solutions, using waste materials – bottom ash and de-oiled soya, Ecol. Environ. Conser., 13 (2006) 181–186.
  13. G.Z. Kyzas, N.K. Lazaridis, A.C. Mitropoulos, Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: equilibrium, reuse and thermodynamic approach, Chem. Engin. J., 189 (2012) 148–159.
  14. R. Zhang, J. Zhang, X. Zhang, C. Dou, R. Han, Adsorption of Congo red from aqueous solutions using cationic surfactant modified wheat straw in batch mode: kinetic and equilibrium study, J. Taiwan Inst. Chem. Eng., 45 (2014) 2578–2583.
  15. C. Xia, Y. Jing, Y. Jia, D. Yue, J. Ma, X. Yin, Adsorption properties of congo red from aqueous solution on modified hectorite: kinetic and thermodynamic studies, Desalination, 265 (2011) 81–87.
  16. G.E.J. Poinern, G. Senanayake, N. Shah, X.N. Thi-Le, G.M. Parkinson, D Fawcett, Adsorption of the aurocyanide, Au(CN)2 complex on granular activated carbons derived from macadamia nut shells-A preliminary study, Minerals Engineering, 24 (2011) 1694–1702.
  17. O.P. Junior, A.L. Cazetta, R.C. Gomes, É.O Barizão, I.P.A.F. Souza, A.C. Martins, T. Asefa, V.C. Almeida, Synthesis of ZnCl2-activated carbon from macadamia nut endocarp (Macadamia integrifolia) by microwave-assisted pyrolysis: optimization using RSM and methylene blue adsorption, J. Anal. Appl. Pyrolysis, 105 (2014) 166–176.
  18. A.M.M. Vargas, A.L. Cazetta, M.H. Kunita, T.L. Silva, V.C. Almeida, Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): study of adsorption isotherms and kinetic models, Chem. Eng. J., 68 (2011) 722–730.
  19. S.M. Miller, J.B. Zimmerman, Novel, bio-based, photoactive arsenic sorbent: TiO2-impregnated chitosan bead, Water Res., 19 (2010) 5722–5729.
  20. M.Ş. Tanyildizi, Modeling of adsorption isotherms and kinetics of reactive dye from aqueous solution by peanut hull, Chem. Eng. J., 168 (2011) 1234–1240.
  21. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76 (2008) 965–977.
  22. T. Shojaeimehr, F. Rahimpour, M.A. Khadivi, M. Sadeghi, A modeling study by response surface methodology (RSM) and artificial neural network (ANN) on Cu2+ adsorption optimization using light expended clay aggregate (LECA), J. Ind. Eng. Chem., 20 (2014) 870–880.
  23. Y. Jin, Y. Wu, J. Cao, Y. Wu, Optimizing decolorization of Methylene Blue and Methyl Orange dye by pulsed discharged plasma in water using response surface methodology, J. Taiwan Inst. Chem. Eng., 45 (2014) 589–595.
  24. A.R. Amani-Ghadim, S. Aber, A. Olad, H. Ashassi-Sorkhabi, Optimization of electrocoagulation process for removal of an azo dye using response surface methodology and investigation on the occurrence of destructive side reactions, Chemical Engineering and Processing: Process Intensification, 64 (2013) 68–78.
  25. E.K. Baghkheirati, M.B. Bagherieh-Najjar, Modelling and optimization of Ag-nanoparticle biosynthesis mediated by walnut green husk extract using response surface methodology, Mater. Lett., 171 (2016) 166–170.
  26. K.P. Singh, S. Gupta, A.K. Singh, S. Sinha, Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach, J. Hazard. Mater., 186 (2011) 1462–1473.
  27. D. Hritcu, D. Humelnicu, G. Dodi, M.I. Popa, Magnetic chitosan composite particles: evaluation of thorium and uranyl ion adsorption from aqueous solutions, Carbohydr. Polym., 87 (2012) 1185–1191.
  28. G. Sharma, M. Naushad, D. Pathania, A. Mittal, G.E. El-Desoky, Modification of Hibiscus cannabinus fiber by graft copolymerization: application for dye removal, Desal. Water Treat., 54 (2015) 3114–3121.
  29. S. Chakraborty, S. Chowdhury, P.D. Saha, Adsorption of Crystal Violet from aqueous solution onto NaOH-modified rice husk, Carbohydr. Polym., 86 (2011) 1533–1541.
  30. A.C. Martins, O. Pezoti, A.L, Cazetta. K.C. Bedin, D.A.S. Yamazaki, G.F.G. Bandoch, T. Asefa, et al., Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies, Chem. Engin. J., 260 (2015) 291–299.
  31. A. Mittal, M. Naushad, G. Sharma, Z.A. ALothman, S.M. Wabaidur, M. Alam, Fabrication of MWCNTs/ThO2 nanocomposite and its adsorption behavior for the removal of Pb(II) metal from aqueous medium, Desal. Water Treat. (2015) 1–7.
  32. M.K. Dahri, M.R.R. Kooh, L.B.L. Lim, Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies, J. Environ. Chem. Engin., 2 (2014) 1434–1444.
  33. T.H. Liou, Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation, Chem. Engin. J., 158 (2010) 129–142.
  34. V.M. Vučurović, R.N. Razmovski, U.D. Miljić, V.S. Puškaš, Removal of cationic and anionic azo dyes from aqueous solutions by adsorption on maize stem tissue, J. Taiwan Inst. Chem. Eng., 45 (2014) 1700–1708.
  35. R.H. Hesas, A. Arami-Niya, W.M.A.W. Daud, J.N. Sahu, Preparation of granular activated carbon from oil palm shell by microwave-induced chemical activation: optimisation using surface response methodology, Chem. Eng. Res. Des., 91 (2013) 2447–2456.
  36. W.S. Wan Ngah, M.A.K.M. Hanafiah, Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review, Bioresour. Technol., 99 (2008) 3935–3948.
  37. V. Nair, A. Panigrahy, R. Vinu, Development of novel chitosan– lignin composites for adsorption of dyes and metal ions from wastewater, Chem. Eng. J., 254 (2014) 491–502.
  38. T. Hosoya, H. Kawamoto, S. Saka, Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature, J. Anal. Appl. Pyrolysis, 80 (2007) 118–125.
  39. J. Lédé, Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose, J. Anal. Appl. Pyrolysis, 94 (2012) 17–32.
  40. M. Zhang, F.L.P. Resende, A. Moutsoglou, D.E. Raynie, Pyrolysis of lignin extracted from prairie cordgrass, aspen, and Kraft lignin by Py-GC/MS and TGA/FTIR, J. Anal. Appl. Pyrolysis, 98 (2012) 65–71.
  41. Z. Luo, S. Wang, X. Guo, Selective pyrolysis of Organosolv lignin over zeolites with product analysis by TG-FTIR, J. Anal. Appl. Pyrolysis, 95 (2012) 112–117.
  42. S. Chowdhury, R. Mishra, P. Saha, P. Kushwaha, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk, Desalination, 265 (2011) 159–168.
  43. K. Amela, M.A. Hassena, D. Kerroum, Isotherm and kinetics study of biosorption of cationic dye onto banana peel, Energy Procedia, 19 (2012) 286–295.
  44. H. Fan, L. Zhou, X. Jiang, Q. Huang, W. Lang, Adsorption of Cu2+ and methylene blue on dodecyl sulfobetaine surfactant-modified montmorillonite, Appl. Clay Sci., 95 (2014) 150–158.
  45. S. Chen, Q. Yue, B. Gao, X. Xu, Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue, J. Colloid. Interf. Sci., 349 (2010) 256–264.
  46. K. Pillay, E.M. Cukrowska, N.J. Coville, Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution, J. Hazard. Mater., 166 (2009) 1067–1075.
  47. J. Zhang, Q. Ping, M. Niu, H. Shi, N. Li, Kinetics and equilibrium studies from the methylene blue adsorption on diatomite treated with sodium hydroxide, Appl. Clay Sci., 83 (2013) 12–16.
  48. J.N. Sahu, J. Acharya, B.C. Meikap, Optimization of production conditions for activated carbons from tamarind wood by zinc chloride using response surface methodology, Bioresour. Technol., 101 (2010) 1974–1982.
  49. A.M.M. Vargas, A.C. Martins, V.C. Almeida, Ternary adsorption of acid dyes onto activated carbon from flamboyant pods (Delonix regia): analysis by derivative spectrophotometry and response surface methodology, Chem. Eng. J., 195 (2012) 173–179.
  50. W. Jiang, A.J. Joens, D.D. Dionysios, K.E. O’Shea, Optimization of photocatalytic performance of TiO2 coated glass microspheres using response surface methodology and the application for degradation of dimethyl phthalate, J. Photochem. Photobiol. A, 262 (2013) 7–13.
  51. M.A. Ahmad, R. Alrozi, Optimization of preparation conditions for mangosteen peel-based activated carbons for the removal of Remazol Brilliant Blue R using response surface methodology, Chem. Eng. J., 165 (2010) 883–890.
  52. S. Chatterjee, A. Kumar, S. Basu, S. Dutta, Application of response surface methodology for methylene blue dye removal from aqueous solution using low cost adsorbent, Chem. Eng. J., 181 (2012) 289–299.
  53. R. Sen, T. Swaminathan, Response surface modeling and optimization to elucidate and analyze the effects of inoculum age and size on surfactin production, Biochem. Eng. J., 21 (2004) 141–148.
  54. H.L. Liu, Y.W. Lan, Y.C. Cheng, Optimal production of sulphuric acid by Thiobacillus thiooxidans using response surface methodology, Process Biochem., 39 (2004) 1953–1961.