References

  1. C.K. Mangat, S. Kaur, Efficient removal and separation of anionic dyes from aqueous medium by the application of reverse micelles of cationic surfactants, Desal. Wat. Treat. 52 (2014) 3555–3563.
  2. R. Zandipak, S. Sobhanardakani, Synthesis of NiFe2O4 nanoparticles for removal of anionic dyes from aqueous solution, Desal. Wat. Treat., 57 (2016) 11348–11360.
  3. Z. Deng, X.H. Zhang, K.C. Chan, L. Liu, T. Li, Fe-based metallic glass catalyst with nanoporous surface for azo dye degradation, Chemosphere, 174 (2017) 76–81.
  4. L. Zheng, C. Wang, Y. Shu, X. Yan, L. Li, Utilization of diatomite/chitosan-Fe (III) composite for the removal of anionic azo dyes from wastewater: equilibrium, kinetics and thermodynamics, Colloids Surf. A., 468 (2015) 129–139.
  5. S. Pu, H. Ma, A. Zinchenko, W. Chu, Novel highly porous magnetic hydrogel beads composed of chitosan and sodium citrate: an effective adsorbent for the removal of heavy metals from aqueous solutions, Environ. Sci. Pollut. Res. Int., 24 (2017) 16520–16530.
  6. X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO Photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes, Nanoscale Res. Lett., 12 (2017) 143–143.
  7. M. Chenna, R. Chemlal, N. Drouiche, K. Messaoudi, H. Lounici, Effectiveness of a physicochemical coagulation/flocculation process for the pretreatment of polluted water containing Hydron Blue Dye, Desal. Wat. Treat., 57 (2016) 27003–27014.
  8. A. Webster, M.D. Halling, D.M. Grant, Metal complexation of chitosan and its glutaraldehyde cross-linked derivative, Carbohydr. Res., 342 (2007) 1189–1201.
  9. N. Jafari, M.R. Soudi, R. Kasra-Kermanshahi, Biodegradation perspectives of azo dyes by yeasts, Microbiology, 83 (2014) 484–497.
  10. M. Ge, C. Cao, J. Huang, S. Li, S. Zhang, S. Deng, Q. Li, K. Zhang, Y. Lai, Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays: a review, Nanotechnol. Rev., 5 (2016) 75–112.
  11. Y. Suerme, R.F. Yilmaz, K. Kayakirilmaz, Removal of textile dye Lanaset Red G from waters by electrochemical degradation and spectrophotometric determination, Desal. Wat. Treat., 53 (2015) 524–529.
  12. S. Pu, R. Zhu, H. Ma, D. Deng, X. Pei, F. Qi, W. Chu, Facile in-situ design strategy to disperse TiO2 nanoparticles on graphene for the enhanced photocatalytic degradation of rhodamine 6G, Appl. Catal. B., 218 (2017) 208–219.
  13. S. Pu, A. Zinchenko, N. Chen, S. Murata, Entrapment and removal of carbon nanotubes and fullerenes by coprecipitation with calcium carbonate beads, ACS Sustain. Chem. Eng., 2 (2014) 2275-2282.
  14. M.S.U. Rehman, I. Kim, J.-I. Han, Adsorption of methylene blue dye from aqueous solution by sugar extracted spent rice biomass, Carbohydr. Polym., 90 (2012) 1314–1322.
  15. V.K. Gupta, R. Kumar, A. Nayak, T.A. Saleh, M.A. Barakat, Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review, Adv. Colloid. Interface Sci., 193 (2013) 24–34.
  16. Y. Wang, G. Xia, C. Wu, J. Sun, R. Song, W. Huang, Porous chitosan doped with graphene oxide as highly effective adsorbent for methyl orange and amido black 10B, Carbohydr. Polym., 115 (2015) 686–693.
  17. R. Cheng, S. Ou, B. Xiang, Y. Li, Q. Liao, Equilibrium and molecular mechanism of anionic dyes adsorption onto copper(II) complex of dithiocarbamate-modified starch, Langmuir, 26 (2010) 752–758.
  18. A. Chen, S. Chen, Biosorption of azo dyes from aqueous solution by glutaraldehyde-crosslinked chitosans, J. Hazard. Mater., 172 (2009) 1111–1121.
  19. P. Saha, S. Datta, Assessment on thermodynamics and kinetics parameters on reduction of methylene blue dye using flyash, Desal. Wat. Treat., 12 (2009) 219–228.
  20. L. Zhang, Q. Liu, P. Hu, R. Huang, Adsorptive removal of methyl orange using enhanced cross-linked chitosan/bentonite composite, Desal. Wat. Treat., 57 (2016) 17011–17022.
  21. E. Guibal, T. Vincent, R. Navarro, Metal ion biosorption on chitosan for the synthesis of advanced materials, J. Mater. Sci., 49 (2014) 5505–5518.
  22. A. Pestov, S. Bratskaya, Chitosan and its derivatives as highly efficient polymer ligands, Molecules, 21 (2016) 1–35.
  23. A.B. Sifontes, R.S. Del Toro, E. Avila, E. Canizales, G. Lovera, L. Cubillan, V. Gonzalez, A. Monaco, J.L. Brito, Chitosan templated synthesis of strontium-iron-oxygen nanocrystalline system, Ceram Int., 41 (2015) 13250–13256.
  24. R.N. Shinde, A.K. Pandey, R. Acharya, R. Guin, S.K. Das, N.S. Rajurkar, P.K. Pujari, Chitosan-transition metal ions complexes for selective arsenic(V) preconcentration, Water Res., 47 (2013) 3497–3506.
  25. J. Qu, Q. Hu, K. Shen, K. Zhang, Y. Li, H. Li, Q. Zhang, J. Wang, W. Quan, The preparation and characterization of chitosan rods modified with Fe3+ by a chelation mechanism, Carbohydr. Res., 346 (2011) 822–827.
  26. D. Yang, L. Qin, Y. Yang, Efficient adsorption of methyl orange using a modified chitosan magnetic composite adsorbent, J. Chem. Eng. Data, 61 (2016) 3933–3940.
  27. C. Shen, H. Chen, S. Wu, Y. Wen, L. Li, Z. Jiang, M. Li, W. Liu, Highly efficient detoxification of Cr(VI) by chitosan-Fe(III) complex: process and mechanism studies, J. Hazard. Mater., 244 (2013) 689–697.
  28. J. Zhang, N. Chen, Z. Tang, Y. Yu, Q. Hu, C. Feng, A study of the mechanism of fluoride adsorption from aqueous solutions onto Fe-impregnated chitosan, Phys. Chem. Chem. Phys., 17 (2015) 12041–12050.
  29. M. Ge, S. Li, J. Huang, K. Zhang, S.S. Al-Deyab, Y. Lai, TiO2 nanotube arrays loaded with reduced graphene oxide films: facile hybridization and promising photocatalytic application, J. Mater. Chem. A, 3 (2015) 3491–3499.
  30. D.H.K. Reddy, S.M. Lee, Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions, Adv. Colloid Interface Sci., 201 (2013) 68–93.
  31. M.T. Klepka, N. Nedelko, J.-M. Greneche, K. Lawniczak-Jablonska, I.N. Demchenko, A. Slawska-Waniewska, C.A. Rodrigues, A. Debrassi, C. Bordini, Local atomic structure and magnetic ordering of iron in Fe-chitosan complexes, Biomacromolecules, 9 (2008) 1586–1594.
  32. R.B. Hernandez, A.P. Franc, O.R. Yola, A. Lopez-Delgado, J. Felcman, M.A.L. Recio, A.L.R. Merce, Coordination study of chitosan and Fe3+, J. Mol. Struct., 877 (2008) 89–99.
  33. M.H.M. Hussein, M.F. El-Hady, W.M. Sayed, H. Hefni, Preparation of some chitosan heavy metal complexes and study of its properties, Polym. Sci. Ser. A., 54 (2012) 113–124.
  34. S.C. Bhatia, N. Ravi, A magnetic study of an Fe-chitosan complex and its relevance to other biomolecules, Biomacromolecules, 1 (2000) 413–417.
  35. G. Cardenas, P. Orlando, T. Edelio, Synthesis and applications of chitosan mercaptanes as heavy metal retention agent, Int. J. Biol. Macromol., 28 (2001) 167–174.
  36. Z. Osman, A.K. Arof, FTIR studies of chitosan acetate based polymer electrolytes, Electrochim. Acta, 48 (2003) 993–999.
  37. G.R. Mahdavinia, S. Karami, Synthesis of magnetic carboxymethyl chitosan-g-poly(acrylamide)/laponite RD nanocomposites with enhanced dye adsorption capacity, Polym. Bull., 72 (2015) 2241–2262.
  38. M. Munoz, Z.M. de Pedro, N. Menendez, J.A. Casas, J.J. Rodriguez, A ferromagnetic γ-alumina-supported iron catalyst for CWPO. Application to chlorophenols, Appl. Catal. B., 136– 137 (2013) 218–224.
  39. G.R. Mandavinia, A. Mosallanezhad, M. Soleymani, M. Sabzi, Magnetic- and pH-responsive kappa-carrageenan/chitosan complexes for controlled release of methotrexate anticancer drug, Int. J. Biol. Macromol., 97 (2017) 209–217.
  40. S. Sen Gupta, K.G. Bhattacharyya, Kinetics of adsorption of metal ions on inorganic materials: a review, Adv. Colloid Interface Sci., 162 (2011) 39–58.
  41. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresour. Technol., 97 (2006) 1061–1085.
  42. H. Mittal, A. Maity, S.S. Ray, The adsorption of Pb2+ and Cu2+ onto gum ghatti-grafted poly(acrylamide-co-acrylonitrile) biodegradable hydrogel: isotherms and kinetic models, J. Phys. Chem. B., 119 (2015) 2026–2039.
  43. G.D. Sheng, D.D. Shao, X.M. Ren, X.Q. Wang, J.X. Li, Y.X. Chen, X.K. Wang, Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes, J. Hazard. Mater., 178 (2010) 505–516.
  44. W. Zhang, H. Yang, L. Dong, H. Yan, H. Li, Z. Jiang, X. Kan, A. Li, R. Cheng, Efficient removal of both cationic and anionic dyes from aqueous solutions using a novel amphoteric straw-based adsorbent, Carbohydr. Polym., 90 (2012) 887–893.
  45. Y.F. Lin, H.W. Chen, P.S. Chien, C.S. Chiou, C.C. Liu, Application of bifunctional magnetic adsorbent to adsorb metal cations and anionic dyes in aqueous solution, J. Hazard. Mater., 185 (2011) 1124–1130.
  46. R. Li, P. Li, J. Cai, S. Xiao, H. Yang, A. Li, Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent, Chemosphere, 154 (2016) 310–318.
  47. B. Tanhaei, A. Ayati, M. Lahtinen, M. Sillanpaa, Preparation and characterization of a novel chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of Methyl Orange adsorption, Chem. Eng. J., 259 (2015) 1–10.
  48. R. Jiang, Y. Fu, H. Zhu, J. Yao, L. Xiao, Removal of methyl orange from aqueous solutions by magnetic maghemite/chitosan nanocomposite films: adsorption kinetics and equilibrium, J. Appl. Polym. Sci., 125 (2012) E540–E549.
  49. L. Liu, J. Ge, L.-T. Yang, X. Jiang, L.-G. Qiu, Facile preparation of chitosan enwrapping Fe3O4 nanoparticles and MIL-101(Cr) magnetic composites for enhanced methyl orange adsorption, J. Porous Mater., 23 (2016) 1363–1372.
  50. M. Khajeh, A.R. Golzary, Synthesis of zinc oxide nanoparticleschitosan for extraction of methyl orange from water samples: Cuckoo optimization algorithm-artificial neural network, Spectrochim. Acta, Part A., 131 (2014) 189–194.